期刊文献+

生物降解热塑性弹性体的分子结构设计与性能研究 被引量:2

Macromolecular structure design and properties of advanced biodegradable thermoplastic elastomers
原文传递
导出
摘要 本文以来源于生物质资源的脂肪族饱和二元醇(1,3-丙二醇、1,4-丁二醇)、饱和二元酸(丁二酸、己二酸和癸二酸)为原料,采用熔融缩聚和扩链反应成功制得一种由结晶型脂肪族饱和聚酯预聚体(HPE)和无定形脂肪族饱和聚酯预聚体(SPE)嵌段而成的生物降解热塑性弹性体(BTPE).研究结果表明,该饱和脂肪族BTPE具有较宽的使用温度范围和低硬度、高弹性等特征. BTPE的玻璃化转变温度在-50℃左右,熔点在105℃以上,初始热分解温度在340℃以上;BTPE的100%定伸回复率大于85%, 300%定伸循环拉伸回复率在75%以上,断裂伸长率可达1100%,拉伸强度在7.5~9.6 MPa,硬度在56~73 HA.在脂肪酶降解液中降解15天, BTPE的失重率可达68%;在自然土壤环境条件下降解120天, BTPE的失重率在57%以上.噻唑蓝(MTT)比色法测试结果表明, BTPE无明显细胞毒性,为一级合格.本文制备的BTPE在环境友好材料和生物医用材料领域具有广阔的应用前景. In this paper, using some bio-based aliphatic diols(1,3-propanediol and 1,4-butanediol) and dibasic acids(succinic acid, adipic acid and sebacic acid), we successfully prepared a novel biodegradable thermoplastic elastomer(BTPE) blocked by crystalline aliphatic hard-segment prepolyester(HPE) and amorphous aliphatic soft-segment prepolyester(SPE) by means of polymerization technologies of melt polycondensation and chain extension reaction.Experimental results showed that the BTPE had glass transition temperature of about –50 °C, melt temperature of about105 °C, and initial thermal decomposition temperature of above 340 °C. The elongation at break of the BTPE was up to1100%, and the recovery rate of 100% tensile deformation of the BTPE was above 85%, meanwhile the recovery rate of cycle stretch with 300% strains was above 75%. The BTPE had controllable hardness between 56 and 73 HA, while the tensile strength was between 7.5 and 9.6 MPa. Notably, mass of the BTPE lost up to 68% after 15-d degradation in lipase buffer solution at 37 °C. Also, mass of the BTPE lost up to 57% after 120-d degradation in natural soil. Methyl thiazolyl tetrazolium(MTT) colorimetric assay showed that the relative growth ratio of L929 cells cultured in BTPE extract for 72 h was above 80%, and the cell growth morphology was good, indicating that the BTPE had no obvious cytotoxicity and the evaluation result was first-class qualified. Above results show that the novel BTPE has great development prospects in the fields of environment-friendly materials and biomedical materials.
作者 燕四伟 王庆国 王兆山 宿烽 Siwei Yan;Qingguo Wang;Zhaoshan Wang;Feng Su(School of Polymer Science and Engineering,Qingdao University of Science&Technology,Qingdao 266042,China;Key Laboratory of Rubber-Plastics of Ministry of Education(QUST),Qingdao 266042,China;School of Chemical Engineering,Qingdao University of Science&Technology,Qingdao 266042,China)
出处 《中国科学:化学》 CAS CSCD 北大核心 2019年第12期1463-1474,共12页 SCIENTIA SINICA Chimica
基金 国家自然科学基金(编号:51773104,51373085) 山东省重点研发项目(编号:2017GGX20138)资助项目
关键词 热塑性弹性体 聚酯 聚合 生物降解性 细胞相容性 thermoplastic elastomer polyester polymerization biodegradability cell compatibility
  • 相关文献

参考文献1

二级参考文献17

  • 1Spontak R J, Patel N P. Thermoplastic elastomers: Fundamentals and applications. Curr Opin Colloid In, 2000, 5:333-340.
  • 2Stntjens S H M, Renken R A E, van Gemert Gaby M L, et al. Thermoplastic elastomers based on strong and well-defined hydrogen-bonding interactions. Macromolecules, 2008, 41:5703-5708.
  • 3Bishop J P, Register R A. Thermoplastic elastomers with composite crystalline-glassy hard domains and single-phase melts. Macromolecules, 2010, 43:4954-4960.
  • 4Legge N R, Holden G, Schroeder H E. Thermoplastic elastomers: A comprehensive review. In: Journal of Polymer Science Polymer Letters Edition. Cincinnati: Hanser Publisher, 1987. 574.
  • 5Deschamps A A, Claase M B, Sleijster W J, et al. Design of segmented poly (ether ester) materials and structures for the tissue engineering of bone. J Control Release, 2002, 78:175-186.
  • 6Stribeck N, Fakirov S. Three-dimensional chord distribution function SAXS analysis of the strained domain structure of a poly (ether ester) thermoplastic elastomer. Macromolecules, 2001, 34:7758-7761.
  • 7Jelinski L W, Dumais J J, Schilling F C, et al. Solid state 13C NMR studies of polyester thermoplastic elastomers. In: NMR Spectroscopy: New Methods and Applications. Washington DC: ACS Publications, 1982. 345-360.
  • 8Stribeck N, Sapoundjieva D, Denchev Z, et al. Deformation behavior of poly (ether ester) copolymer as revealed by small- and wide-angle scattering of X-ray radiation from synchrotron. Macromolecules, 1997, 30:1329-1339.
  • 9Williams C K, Hillmyer M A. Polymers from renewable resources: A perspective for a special issue of polymer reviews. Polym Rev, 2008, 48:1-10.
  • 10Rathi R C, Zentner G M, Jeong B. Biodegradable low molecular weight triblock poly (lactide-co-glycolide) polyethylene glycol copolymers having reverse thermal gelation properties. US Patent 6117949. 2000.

同被引文献31

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部