期刊文献+

基于改进卷积神经网络与集成学习的人脸识别算法 被引量:37

Face Recognition Algorithm Based on Improved Convolutional Neural Network and Ensemble Learning
在线阅读 下载PDF
导出
摘要 针对复杂卷积神经网络(CNN)在中小型人脸数据库中的识别结果容易出现过拟合现象,提出一种基于改进CNN网络与集成学习的人脸识别算法。改进CNN网络结合平面网络和残差网络的特点,采用平均池化层代替全连接层,使得网络结构简单且可移植性强。在改进CNN网络的基础上,利用基于投票法的集成学习策略将所有个体学习器结果凸组合为最终结果,实现更准确的人脸识别。实验结果表明,该算法在Color FERET、AR和ORL人脸数据库上的识别准确率分别达到98.89%、99.67%和100%,并且具有较快的收敛速度。 To address overfitting of recognition results in complex Convolutional Neural Network(CNN)on small and medium face databases,this paper proposes a face recognition algorithm based on improved CNN and ensemble learning.Combining the characteristics of planar networks and residual networks,the improved CNN replaces the fully connected layer with the average pooling layer to make the network structure simple and highly portable.Based on this improved CNN,the voting-based ensemble learning strategy is used to implement convex combination for results of all individual learners and obtain the final result,so more accurate face recognition could be realized.Experimental results show that the recognition accuracy of the proposed algorithm reaches 98.89%,99.67%and 100%respectively on Color FERET,AR and ORL face databases with a high convergence speed.
作者 柯鹏飞 蔡茂国 吴涛 KE Pengfei;CAI Maoguo;WU Tao(College of Information Engineering,Shenzhen University,Shenzhen,Guangdong 518060,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第2期262-267,273,共7页 Computer Engineering
基金 国家自然科学基金(61872244)
关键词 深度学习 模式识别 卷积神经网络 集成学习 人脸识别 deep learning pattern recognition Convolutional Neural Network(CNN) ensemble learning face recognition
  • 相关文献

参考文献11

二级参考文献65

  • 1万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 2鲁珂,赵继东,叶娅兰,曾家智.保局投影算法在图像检索中的应用研究[J].计算机应用研究,2006,23(12):56-58. 被引量:5
  • 3Zhao W,Chellappa R,Phillips P J,et al.Face recognition:A li-terature survey[J].ACM Computer Surveys (CSUR),2003,35(4):399-458.
  • 4Turk M,Pentland A.Eigenfaces for recognition[J].Journal of cognitive neuroscience,1991,3(1):71-86.
  • 5Belhumeur P N,Hespanha J P.Eigenfaces vs.fisherfaces:Re-cognition using class specific linear projection[J].IEEE Tran-sactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 6Liu C,Wechsler H.Gabor feature based classification using the enhanced fisher linear discriminant model for face[J].IEEE Transactions on Image Processing,2002,11(4):467-476.
  • 7Ahonen T,Hadid A,Pietikainen M.Face Description with Local Binary Patterns:Application to Face Recogniton[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(12):2037-2041.
  • 8Vu N S,Caplier A.Enhanced patterns of oriented edge magnitudes for face revognition and image matching[J].IEEE Tran-sactions on Image Processing,2011,21(3):1352-1365.
  • 9M Bicego,A Lagorio,E Grosso,et al.On the use of SIFT features for face authentication[C]∥Computer Vision and Pattern Recognition Workshop,2006(CVPRW’06).2006:35.
  • 10Chan T H,Jia K,Gao S,et al.PCANet:A Simple Deep Learning Baseline for Image Classification?[J].IEEE Transactions on Image Processing,2014,4(12):1.

共引文献122

同被引文献310

引证文献37

二级引证文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部