期刊文献+

基于B样条神经网络算子的散乱数据插值 被引量:2

Interpolation for scattered data with B-spline neural network operators
在线阅读 下载PDF
导出
摘要 目的:研究散乱数据神经网络算子的插值逼近性。方法:首先,将一维B样条函数变换成一类Sigmoid函数。然后,将若干个上述Sigmoid函数相乘得到的多元函数作为激活函数。结果:构造了一类多元神经网络插值算子,以函数的光滑模作为逼近度量,借助散乱数据网格范数,估计该类神经网络算子对有界域上的多元连续函数的逼近误差。特别地,给出一些具体的数值仿真算例进一步验证理论结果。结论:B样条神经网络算子对散乱数据有较好的插值逼近性。 Aims: This paper aims to study the interpolation of scattered data by neural network operators. Methods: These neural network operators were activated by the well-known B-spline functions. Results: A class of interpolation operators for multivariate neural networks was constructed. Using the modulus of smoothness of the function and the mesh norm scattered data as a measure of approximation, we proved the uniform approximation theorem and estimated the approximation errors for multivariate continuous function defined on compact sets. In particular, we demonstrated some numerical results to confirm our theorem. Conclusions: B-spline neural network operators have better interpolation approximation to scattered data.
作者 徐慧芳 曹飞龙 XU Huifang;CAO Feilong(College of Sciences,China Jiliang University,Hangzhou 310018,China)
出处 《中国计量大学学报》 2019年第4期506-513,523,共9页 Journal of China University of Metrology
基金 国家自然科学基金项目(No.61672477)
关键词 计量 神经网络 插值 散乱数据 B样条函数 逼近误差 metrology neural network interpolation scattered data B-spline function approximation error
  • 相关文献

参考文献4

二级参考文献28

  • 1陈天平.Approximation Problems in System Identification With Neural Networks[J].Science China Mathematics,1994,37(4):414-421. 被引量:8
  • 2孙燮华.关于用Bernstein型插值同时逼近的注记[J].中国计量学院学报,1992,3(2):13-16. 被引量:1
  • 3陈天平.神经网络及其在系统识别应用中的逼近问题[J].中国科学(A辑),1994,24(1):1-7. 被引量:50
  • 4CYBENKO G.Approximation by superpostions of sigmodial functions[J].Mathematics of Control Signals and Systems,1989,2:303-314.
  • 5FUNAHASHI K.On the approximate realization of continuous functions mappings by neural Networks[J].Neural Networks,1989,2:183-192.
  • 6HORNIK K.Approximation capabilities of mutilayer feedforward networks[J].Neural Networks,1991,4:251-257.
  • 7XU Z B,CAO F L.Simultaneous Lp-approximation order for neural networks[J].Neural Networks,2005,18:914-923.
  • 8CARDALIAGUET P,EUVRARD G.Approximation of a function and its derivative with a neural Network[J].Neural Networks,1992,5:207-220.
  • 9ANATASSIOU G A.Rate of convergence of some neural network operators to the unit-univarate case[J].Journal of Mathematical Analysis and Applications,1997,212:237-262.
  • 10Ito Y, Saito K. Superposition of linearly independent functions and finite mappings by neural networks. Math Sci, 1996, 21(1) : 27-33

共引文献35

同被引文献35

引证文献2

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部