期刊文献+

A bio-inspired O2-tolerant catalytic CO2 reduction electrode 被引量:5

A bio-inspired O2-tolerant catalytic CO2 reduction electrode
原文传递
导出
摘要 The electrochemical reduction of CO2 to give CO in the presence of O2 would allow the direct valorization of flue gases from fossil fuel combustion and of CO2 captured from air. However, it is a challenging task because O2 reduction is thermodynamically favored over that of CO2. 5% O2 in CO2 near catalyst surface is sufficient to completely inhibit the CO2 reduction reaction. Here we report an O2-tolerant catalytic CO2 reduction electrode inspired by part of the natural photosynthesis unit. The electrode comprises of heterogenized cobalt phthalocyanine molecules serving as the cathode catalyst with >95% Faradaic efficiency(FE) for CO2 reduction to CO coated with a polymer of intrinsic microporosity that works as a CO2-selective layer with a CO2/O2 selectivity of $20. Integrated into a flow electrolytic cell, the hybrid electrode operating with a CO2 feed gas containing 5% O2 exhibits a FECOof 75.9% with a total current density of 27.3 mA/cm^2 at a cell voltage of 3.1 V. A FECO of 49.7% can be retained when the O2 fraction increases to 20%. Stable operation for 18 h is demonstrated. The electrochemical performance and O2 tolerance can be further enhanced by introducing cyano and nitro substituents to the phthalocyanine ligand. The electrochemical reduction of CO2 to give CO in the presence of O2 would allow the direct valorization of flue gases from fossil fuel combustion and of CO2 captured from air. However, it is a challenging task because O2 reduction is thermodynamically favored over that of CO2. 5% O2 in CO2 near catalyst surface is sufficient to completely inhibit the CO2 reduction reaction. Here we report an O2-tolerant catalytic CO2 reduction electrode inspired by part of the natural photosynthesis unit. The electrode comprises of heterogenized cobalt phthalocyanine molecules serving as the cathode catalyst with >95% Faradaic efficiency(FE) for CO2 reduction to CO coated with a polymer of intrinsic microporosity that works as a CO2-selective layer with a CO2/O2 selectivity of $20. Integrated into a flow electrolytic cell, the hybrid electrode operating with a CO2 feed gas containing 5% O2 exhibits a FECOof 75.9% with a total current density of 27.3 m A/cm2 at a cell voltage of 3.1 V. A FECOof 49.7% can be retained when the O2 fraction increases to 20%. Stable operation for 18 h is demonstrated. The electrochemical performance and O2 tolerance can be further enhanced by introducing cyano and nitro substituents to the phthalocyanine ligand.
出处 《Science Bulletin》 SCIE EI CAS CSCD 2019年第24期1890-1895,共6页 科学通报(英文版)
基金 supported by the U.S. National Science Foundation (CHE-1651717) the Croucher Fellowship for Postdoctoral Research supported by Global Innovation Initiative from Institute of International Education support from Shenzhen Fundamental Research Funding (JCYJ20160608140827794)
关键词 Electrochemical CO2 reduction O2 tolerance Gas separation Polymer of intrinsic microporosity Cooperative catalysis Electrochemical CO2 reduction O2 tolerance Gas separation Polymer of intrinsic microporosity Cooperative catalysis
  • 相关文献

同被引文献18

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部