期刊文献+

High-precision Dating and Geological Significance of Chang 7 Tuff Zircon of the Triassic Yanchang Formation, Ordos Basin in Central China 被引量:21

High-precision Dating and Geological Significance of Chang 7 Tuff Zircon of the Triassic Yanchang Formation, Ordos Basin in Central China
在线阅读 下载PDF
导出
摘要 The Ordos Basin, as the second largest petroliferous basin of China, contains abundant oil and gas resources, oil shale, and sandstone-type uranium mineral resources. Chang 7 shale is not only the major source rock of the Mesozoic petroliferous system of the Basin, but is also crucial in determining the space-time distribution relationship of the shale section for the effective exploration and development of the Basin's oil and gas resources. To obtain a highly precise age of the shale development section, we collected tuff samples from the top and bottom profile of the Chang 7 Member, Yishi Village, Yaoqu Town, Tongchuan District, on the southern margin of the Ordos Basin and performed high-precision chemical abrasion(CA)–isotope dilution(ID)–thermal ionization mass spectrometry(TIMS) zircon U-Pb dating on the basis of extensive laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) zircon U-Pb dating data. Our results show the precise ages of the top and bottom zircon in the Chang 7 shale to be 241.06±0.12 Ma and 241.558±0.093 Ma, respectively. We first obtained Chang 7 age data with Grade 0.1-Ma precision and then determined the age of the shale development in the Chang 7 Member to be the early-Middle Triassic Ladinian. This result is supported by paleontological evidence. The deposition duration of the Chang 7 shale is 0.5 Ma with an average deposition rate of the shale section being 5.3 cm/ka. Our research results provide time scale and basic data for further investigation of the basin–mountain coupling relation of the shale section, the sedimentary environment and volcanic ash and organic-matter-rich shale development relation, and the organism break-out and organic-matter enrichment mechanism. The Ordos Basin, as the second largest petroliferous basin of China, contains abundant oil and gas resources, oil shale, and sandstone-type uranium mineral resources. Chang 7 shale is not only the major source rock of the Mesozoic petroliferous system of the Basin, but is also crucial in determining the space-time distribution relationship of the shale section for the effective exploration and development of the Basin’s oil and gas resources. To obtain a highly precise age of the shale development section, we collected tuff samples from the top and bottom profile of the Chang 7 Member, Yishi Village, Yaoqu Town, Tongchuan District, on the southern margin of the Ordos Basin and performed high-precision chemical abrasion(CA)-isotope dilution(ID)-thermal ionization mass spectrometry(TIMS) zircon U-Pb dating on the basis of extensive laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) zircon U-Pb dating data. Our results show the precise ages of the top and bottom zircon in the Chang 7 shale to be 241.06±0.12 Ma and 241.558±0.093 Ma, respectively. We first obtained Chang 7 age data with Grade 0.1-Ma precision and then determined the age of the shale development in the Chang 7 Member to be the early-Middle Triassic Ladinian. This result is supported by paleontological evidence. The deposition duration of the Chang 7 shale is 0.5 Ma with an average deposition rate of the shale section being 5.3 cm/ka. Our research results provide time scale and basic data for further investigation of the basin-mountain coupling relation of the shale section, the sedimentary environment and volcanic ash and organic-matter-rich shale development relation, and the organism break-out and organic-matter enrichment mechanism.
出处 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第6期1823-1834,共12页 地质学报(英文版)
基金 supported by the National Basic Research Program of China (973 Program) granted No. 2014CB239001
关键词 Ordos Basin Chang 7 Member TUFF zircon U-Pb dating Ordos Basin Chang 7 Member tuff zircon U-Pb dating
  • 相关文献

参考文献21

二级参考文献403

共引文献750

同被引文献376

引证文献21

二级引证文献174

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部