期刊文献+

基于LS-SVM的超磁致伸缩致动器数据驱动建模方法研究

Research on data-driven modeling method of giant magnetostrictive actuator based on LS-SVM
在线阅读 下载PDF
导出
摘要 针对超磁致伸缩材料(GMM)的强非线性特征,提出了一种新的超磁致伸缩驱动器(GMA)实验系统及其数据驱动建模方法.实验中的测量数据取自光栅传感器,采用数据驱动原理,基于最小二乘支持向量机(LS-SVM)实现了GMA的非线性建模.对模型性能进行了实验评估,预测了GMM棒的动态特性,并讨论了驱动电压对输出特性的影响.实验结果显示,该模型能较好地预测GMA的制动输出,预测误差在0.05%以内. Aiming at the strong nonlinear characteristics of Giant Magnetostrictive Material(GMM),a new experimental system of Giant Magnetostrictive Actuator(GMA)and its data-driven modeling method are proposed.The measured data in the experiment were taken from grating sensors,and the nonlinear modeling of GMA was realized based on the Least Squares Support Vector Machine(LS-SVM)using the data-driven principle.The performance of the model is evaluated experimentally,the dynamic characteristics of the GMM rod are predicted,and the influence of driving voltage on the output characteristics is also discussed.The experimental results show that the model can predict the braking output of GMA well,and the prediction error is within 0.05%.
作者 段丽君 田浩 韩屏 DUAN Lijun;TIAN Hao;HAN Ping(School of Computer,Hubei University of Education,Wuhan 430205,China;School of Information and Communication Engineering,Hubei University of Economics,Wuhan 430205,China;School of Information Engineering,Wuhan University of Technology,Wuhan 430070,China)
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第6期902-908,共7页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金项目(61572012)
关键词 超磁致伸缩驱动器 光栅传感器 数据驱动 最小二乘支持向量机 模型 预测误差 GMA grating sensors data-driven LS-SVM model prediction error
  • 相关文献

参考文献3

二级参考文献37

  • 1王博文,曹淑瑛,黄文美,孙英.超磁致伸缩致动器的数学模型和控制技术[J].河北工业大学学报,2013,42(1):6-13. 被引量:5
  • 2李欣欣,王文,陈戬恒,陈子辰.Jiles-Atherton模型的超磁致伸缩驱动器磁滞补偿控制[J].光学精密工程,2007,15(10):1558-1563. 被引量:18
  • 3Clark,A.E., Bozorth,R.M. and Desavage,B.F., Anomalous thermal expansion and magnetostriction of single crystals of dysprosium. Physics Letters, 1963, 5(2): 100-102.
  • 4Clark,A.E. and Belson,H.S., Giant Room-Temperature Magnetostrictions in TbFe2 and DyFe2. Physical Review B, 1972, 5(9): 3642-3644.
  • 5Clark,A.E., Magnetic and magnetoelastic properties of highly magnetostrictive rare earth-iron Laves phase compounds. America Institute of Physics Conference Proceeding, 1973, 18: 1015-1029.
  • 6Clark,A.E., High-field magnetization and coercivity of amorphous rare-earth-Fe2 alloys. Applied Physics Letters, 1973, 23(11): 642-644.
  • 7Ralph,C.F., James,R.D., Dariusz,A.B., Vijay, G. and Norman,D.H., Terfenol-D driven flaps for helicopter vibration reduction. Smart Materials and Structures, 1996, 5(1): 49-57.
  • 8Yoshiya,N., Masanao,N., Keiji,M., Kiyoshhi,T., Masashi,Y. and Takafumi,F., Development of active six- degrees-of-freedom microvibration control system using giant magnetostrictive actuators. Smart Materials and Structures, 2000, 9(2): 175-185.
  • 9John,S., Sirohi,J., Wang,G. and Wereley, N.M., Comparison of piezeoelectric, magnetostrictive, and elec- trostrictive hybrid hydraulic actuators. Journal of Intelligent Material System and Structures, 2007, 18(10): 1035-1048.
  • 10Jiles,D.C. and Atherton,D.L., Theory of ferromagnetics hysteresis. Journal of Magnetism and Magnetic Materials, 1986, 61(1-2): 48-60.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部