期刊文献+

结构化特征融合的人脸表情识别 被引量:2

Structured features fusion for facial expression recognition
在线阅读 下载PDF
导出
摘要 考虑中心像素值对梯度幅值计算的影响,提出绝对尺度不变特征变换(ASIFT)描述子,结合主动形状模型(ASM)定位人脸特征点,提出ASM-ASIFT特征提取方法。将该方法所提特征与通过划分人脸表情区域并赋予权值的局部二值模式(LBP)特征进行结构化融合。实验结果表明,结构化融合后的正脸和侧脸表情识别的准确率分别为83.44%和71.19%,较ASM-ASIFT以及区域LBP方法,分别提高了4.77%、4.78%和6.98%、8.45%,表明融合后的特征能更加完整、精确地描述面部表情的细节信息,具有更强的表征能力。 Considering the influence of the central pixel value on the gradient magnitude calculation,an absolute scale invariant feature transform(ASIFT)descriptor was proposed.By combining active shape model(ASM)to locate facial feature points,ASM-ASIFT feature extraction method was proposed.The ASM-ASIFT feature and the local binary patterns(LBP)feature obtained by dividing the facial expression area and assigning weights were structured fused.Extensive experiments demonstrate that the accuracy of frontal and profile expression recognition after structured fusion is 83.44%and 71.19%,which is 4.77%,4.78%and 6.98%,8.45%higher than that of ASM-ASIFT method and regional LBP method respectively.The results show that the proposed method can extract the detailed information of facial expressions more completely and accurately,and the fusion features have stronger representation ability.
作者 黄倩露 王强 HUANG Qian-lu;WANG Qiang(School of Electronics and Information,Nantong University,Nantong 226019,China)
出处 《计算机工程与设计》 北大核心 2019年第11期3325-3330,共6页 Computer Engineering and Design
基金 江苏省科技成果转化专项基金项目(BA2015045) 南通市科技计划基金项目(GY2015010) 江苏省前瞻性联合研究基金项目(BY2016053-10) 南通大学研究生科研创新计划基金项目(YKC16013)
关键词 表情识别 LBP 尺度不变特征变换 主动外观模型 局部特征描述子 facial expression recognition local binary pattern scale invariant feature transform active shape model local feature descriptor
  • 相关文献

参考文献8

二级参考文献83

  • 1刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 2薛雨丽,毛峡,张帆.BHU人脸表情数据库的设计与实现[J].北京航空航天大学学报,2007,33(2):224-228. 被引量:20
  • 3谭华春,章毓晋.基于人脸相似度加权距离的非特定人表情识别[J].电子与信息学报,2007,29(2):455-459. 被引量:8
  • 4Fadi D,Abdelmalik M,Bogdan R.Facial expression recognition using tracked facial actions:classifier performance analysis[J].Engineering Applications of Artificial Intelligence,2013,l26(1):467-477.
  • 5Rudovic O,Pantic M,Patras L.Coupled gaussian processes for pose-invariant facial expression recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(6):1357-1369.
  • 6Lowe D G.Distinctive image features from scale-invariant key points[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 7Hamit S,Hasan D.Localized discriminative scale invariant feature transform based facial expression recognition[J].Computers and Electrical Engineering,2012,38(5):1299-1309.
  • 8Hu Y,Zeng Z,Yin L,et al.A study of non-frontal-view facial expressions recognition[C]//Proc of 19th International Conference on Pattern Recognition(ICPR 2008),Florida,USA,2008:1-4.
  • 9Zheng W,Tang H,Lin Z,et al.A novel approach to expression recognition from non-frontal face images[C]//Proc of 12th IEEE International Conference on Computer Vision(ICCV 2009),Kyoto,Japan,2009:1901-1908.
  • 10Zheng W,Tang H,Lin Z,et al.Emotion recognition from arbitrary view facial images[C]//Proc of 11th European Conference on Computer Vision(ECCV 2010),Crete,Greece,2010:490-503.

共引文献129

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部