期刊文献+

应用遥测数据的地球同步轨道卫星热变形分析

Research on Thermal Deformation of GEO Satellite by Using Telemetry Measurement Data
在线阅读 下载PDF
导出
摘要 地球同步轨道卫星会受在轨环境影响而产生热变形,进而影响载荷的对地指向精度,由于空间环境的不确定性和热变形的非线性,在轨的热变形难以量化。文章研究了应用真实在轨遥测数据分析卫星星体热变形的规律,将热变形视作日周期项与年周期项的组合,建立了傅里叶级数形式的数学模型,并利用最小二乘法提出了星体热变形参数的估计方法。对两颗卫星的星体热变形进行了估计和补偿仿真,参数估计结果一致性好,表明了建模的合理性与补偿的可行性。热变形日周期项得到了很好的补偿,其峰峰值降低了80%,年周期项的峰峰值部分降低达80%,但整体上不如日周期项。 Geosynchronous orbit satellites are subject to thermal deformation due the orbital environment,which is in turn affects the pointing accuracy of the payload.Quantifying the thermal deformation is difficult since uncertain and nonlinear effort of the environment.In this paper,body thermal deformation of satellite is analyzed based on the real in-orbit telemetry measurement data.The deformation is consider as a combination of daily deformation and annual period deformation,and a model is established by using fourier series,in addition the way to estimate the parameters of body thermal deformation is given.Body thermal deformation of two satellites is estimated and compensated within simulation,which shows coherence of the estimation,validity of the modeling and feasibility of the compensation method.Peak-to-peak value of daily deformation is reduced by 80%,while the annual period deformation reduced by 80%partly,achieving less benefit than the daily part generally.
作者 王海强 吕红剑 李新刚 裴胜伟 WANG Haiqiang;LYU Hongjian;LI Xingang;PEI Shengwei(Institute of Telecommunication Satellite,China Academy of Space Technology,Beijing 100094,China)
出处 《航天器工程》 CSCD 北大核心 2019年第5期81-88,共8页 Spacecraft Engineering
关键词 热变形 星敏感器 指向精度 误差补偿 在轨数据 thermal deformation star sensor pointing accuracy error compensation telemetry measurement data
  • 相关文献

参考文献4

二级参考文献30

  • 1静永娟,李晓红,岳喜山.TC1钛合金蜂窝夹层结构的钎焊工艺研究与分析[J].航空制造技术,2012,55(13):137-139. 被引量:18
  • 2王兴涛,李迎春,李晓燕.“天绘一号”卫星星敏感器精度分析[J].遥感学报,2012,16(S1):90-93. 被引量:11
  • 3陈杰,周荫清.星载SAR相控阵天线热变形误差分析[J].北京航空航天大学学报,2004,30(9):839-843. 被引量:9
  • 4RAO SK, TANG MQ. Stepped-reflector antenna for dual-band multiple beam satellite communications payloads [J]. IEEE Transactions on Antennas and Propagation, 2006, 54(3): 801-811.
  • 5FOWEI.L A RICHARD, WANG G HANCHING. Precision pointing of the Thuraya satellite [C]. 26th Annual AAS Rocky Mountain Guidance and Control Conference, Breckenridge, CO, February 5 9, 2003.
  • 6WU ANDY YEONGWEI, CHIANG Y RICHARD, LI KEN RONGSHENG. Precision beacon-assisted attitude control for spaceway [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, August 11-14, 2003.
  • 7BONG WIE. Space vehicle dynamics and control [M]. Reston: American Institute of Aeronautics and Astronautics, 2008.
  • 8TAKASHI KIDA, ISAO YAMAGUCHI, YUICHI CHIDA, et al. On-orbit robust control experiment of flexible spacecraft ETS-VI [J]. Journal of Guidance, Control, and Dynamics, 1997, 20(5): 865-872.
  • 9TOMOYUKI NAGASHIO, TAKASHI KIDA, TAKASHI OHTANI, et al. Design and implementation of robust symmetric attitude controller for ETS-VIII spacecraft [J]. Control Engineering Practice, 2010, 18(12): 1440-1451.
  • 10YOSHIRO HAMADA, TAKASHI OHTANI, TAKASHI KIDA, et al. Synthesis of a linearly interpolated gain scheduling controller for large flexible spacecraft ETS-VIII [J]. Control Engineering Practice, 2011, 19(6): 611-625.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部