摘要
设A是一个有限维代数,R是A的对偶扩张代数.MA是一个A-模.给定一个倾斜R-模M(?)AR,我们知道MA一定是一个倾斜A-模 设(TM(?)AR,FM(?)AR)与(TM,FM)是分别由M(?)AR和MR导出的挠理论.本文讨论挠理论的分裂性以及GenericA-模与GenericR-模之间的关系.
Let A be a finite-dimensional algebra, R the dual extension of A and MA an A-module. Given a tilting R-module M (?)A R, it is known that M must be a tilting A-module. Let (TM(?)AR,FM(?)AR) and (TM,FM) be the torsion theories induced by M (?)A R and MR respectively. In the present paper, the author investigates the splitness of the torsion theory, and the relationship between Generic A-module and Generic R-module.
出处
《数学年刊(A辑)》
CSCD
北大核心
2002年第5期547-554,共8页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10071062)
安徽省自然科学基金资助的项目.
关键词
对偶扩张
分裂挠理论
Generic模
Dual extension, Splitting torsion theory, Generic module 2000 MR