摘要
Cassava residue was liquefied by using ethylene glycol(EG), ethylene carbonate, propylene carbonate and polyethylene glycol(molecular weight: 400 g/mol) as the liquefaction reagent respectively at the temperature of 130-170 ℃ with sulfuric acid as the catalyst. The influences of liquefaction parameters, such as the type of liquefaction reagents, mass ratio of EG/cassava residue, liquefaction temperature and time on the properties of the products were discussed. The optimum liquefaction conditions were obtained when the mass ratio of EG/cassava residue was 6:1(w/w), the liquefaction temperature was 150 ℃, the liquefaction time was3 h and the mass fraction of concentrated sulfuric acid/EG was 2.5 wt%. The hydroxyl numbers and residue content of the liquefied products at optimal conditions were 1 137 mgKOH/g and 0.43%, respectively. FT-IR spectrum showed that the liquefaction product of cassava residue was polyether polyol and could be used to prepare polyurethane material or alkyd resins.
Cassava residue was liquefied by using ethylene glycol(EG), ethylene carbonate, propylene carbonate and polyethylene glycol(molecular weight: 400 g/mol) as the liquefaction reagent respectively at the temperature of 130-170 ℃ with sulfuric acid as the catalyst. The influences of liquefaction parameters, such as the type of liquefaction reagents, mass ratio of EG/cassava residue, liquefaction temperature and time on the properties of the products were discussed. The optimum liquefaction conditions were obtained when the mass ratio of EG/cassava residue was 6:1(w/w), the liquefaction temperature was 150 ℃, the liquefaction time was3 h and the mass fraction of concentrated sulfuric acid/EG was 2.5 wt%. The hydroxyl numbers and residue content of the liquefied products at optimal conditions were 1 137 mgKOH/g and 0.43%, respectively. FT-IR spectrum showed that the liquefaction product of cassava residue was polyether polyol and could be used to prepare polyurethane material or alkyd resins.
作者
KANG Jiaqing
JIN Yanqiao
康佳清;CHEN Wei;YAO Yuan;靳艳巧;CHENG Xiansu;Lü Qiufeng(Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University)
基金
Funded by the National Natural Science Foundation of China(No.51503041)
the Natural Science Foundation of Fujian Province,China(No.2018J01752)