摘要
针对所有移动用户均具有缓存能力的终端直传(D2D)缓存网络,将移动用户的位置分布建模为均匀泊松点过程(HPPP),并在此基础上结合内容缓存和内容请求的随机性,对网络干扰进行了精确分析和特定场景下的近似分析。考虑到D2D缓存技术融合了用户终端缓存与D2D通信的双重特点,即内容卸载包括自卸载和D2D卸载两种卸载方式、内容传输需要满足接收端信干比(SIR)和D2D距离的双重约束,利用随机几何理论推导出D2D缓存网络的成功卸载概率(SOP)的闭式表达式。仿真结果表明,结合D2D缓存网络特点的SOP更具有一般性,在特定场景下可以退化成已有研究中的特例。例如,在用户密集分布以及D2D最大通信距离较大的情况下SOP会退化成不考虑D2D距离约束的成功传输概率(STP)。
In the Device-to-Device (D2D) caching network where mobile user terminals are all cache-enabled,the spatial distributions of all users were modeled as the Homogeneous Poisson Point Processes (HPPP).On this basis,combined with the randomness of content caching and requesting,the network interference was analyzed exactly and then approximately under specific scenarios.Considering that the D2D caching technique has the dual characteristics of both caching at terminals and D2D communications,which means that the content offloadeding includes self-offloading way and D2D-offloading way,and the content transmission has to meet the constraints of received Signal-to-Interference Ratio (SIR) and D2D maximal communication distance simultaneously,the closed-form expressions of Successful Offloading Probability (SOP) of the random D2D caching network was deducted.Simulation results show that the proposed SOP is a general metric and can be reduced to the special cases of existing research results.For example,when the users are distributed densely and the D2D maximal communication distance is relatively large,the SOP is reduced to the Successful Transmission Probability (STP) without considering the D2D distance constraint.
作者
龙彦汕
富勤学
郭继斌
张孟其
蔡跃明
LONG Yanshan;FU Qinxue;GUO Jibin;ZHANG Mengqi;CAI Yueming(College of Communications Engineering,Army Engineering University,Nanjing Jiangsu 210007,China;61416 Force,Beijing 100000,China;Navy 91208 Force,Qingdao Shandong 266100,China)
出处
《计算机应用》
CSCD
北大核心
2019年第8期2346-2353,共8页
journal of Computer Applications
基金
国家自然科学基金资助项目(61671474)
江苏省优秀青年基金资助项目(BK20170089)~~
关键词
终端直传缓存网络
网络干扰
成功卸载概率
自卸载
随机几何
Device-to-Device (D2D) caching network
network interference
successful offloading probability
self-offloading
stochastic geometry