期刊文献+

融合分类与协同过滤的情境感知音乐推荐算法 被引量:7

Context-aware music recommendation algorithm based on classification and collaborative filtering
在线阅读 下载PDF
导出
摘要 针对用户情境信息,提出一种融合分类与协同过滤的情境感知音乐推荐算法.首先,通过计算用户情境信息的相似度,由协同过滤算法得到初始音乐推荐列表;然后通过机器学习算法训练分类模型,得出用户在特定情境下的音乐类型偏好;最后将协同过滤得到的推荐列表与分类模型得到的音乐类型偏好进行融合,为特定情境的用户提供个性化音乐推荐.该算法不仅有效地降低了推荐过程的复杂度,还使传统的协同过滤推荐算法具备了情境感知的能力.实验结果表明,该方法可以有效地提高个性化音乐推荐系统的性能. A context-aware music recommendation algorithm combining classification and collaborative filtering was proposed to solve the problem of how to use context information for personalized recommendation.First,this paper was adopted a method of calculating the similarity of user context information,and was used the collaborative filtering algorithm to obtain the initial music recommendation list.Then the classification model had been trained by the machine learning algorithm to derive the user’s music type preference in a specific context.The recommended list generated by collaborative filtering algorithm was merged with the music type preference predicted by the classifier to provide personalized music recommendations for users in specific situations.The algorithm not only effectively reduced the complexity of the recommendation process,but also enabled the traditional collaborative filtering recommendation algorithm to have context-awareness.Experimental results had proved that this method can effectively improve the performance of personalized music recommendation system.
作者 吴海金 陈俊 WU Haijin;CHEN Jun(College of Physics and Information Engineering,Fuzhou University,Fuzhou,Fujian 350108,China)
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2019年第4期467-471,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(61571129)
关键词 音乐推荐 个性化推荐 情境感知 协同过滤 music recommendation personalized recommendation context-aware collaborative filtering
  • 相关文献

参考文献4

二级参考文献91

  • 1贾平,代建华,潘云鹤,朱淼良.一种基于互信息增益率的新属性约简算法[J].浙江大学学报(工学版),2006,40(6):1041-1044. 被引量:29
  • 2Verbert K,Manouselis N, Ochoa X,et al. Context-aware Rec-ommender Systems for Learning : a Survey and Future Challen-ges[ J]. Learning Technologies, IEEE Transactions on, 2012,5(4):318-335.
  • 3Kim J, Lee D, Chung K Y. Item Recommendation Based on Context - aware Model for Personalized U - healthcare Service [J]. Multimedia Tools and Applications,2013:1-18.
  • 4Dao T H,Jeong S R,Ahn H. A Novel Recommendation Model of Location - based Advertising : Context - aware Collaborative Filtering Using GA approach[ J]. Expert Systems with Applications, 2012,39(3):3731-3739.
  • 5Baltrunas L, Ludwig B, Peer S, et al. Context Relevance Assessment and Exploitation in Mobile Recommender Systems[ J]. Personal and Ubiquitous Computing, 2012,16(5) : 507-526.
  • 6Majid A,Chen L,Chen G, et al. A Context-aware Personalized Travel Recommendation System Based on Geotagged Social Media Data Mining [ J]. International Journal of Geographical Information Science,2013,27(4) : 662-684.
  • 7Dey A K. Providing Architectural Support for Building Context-aware Applications [ D] . Georgia Institute of Technology, 2000.
  • 8Dey A K. Understanding and Using Context[J]. Personal and Ubiquitous Computing, 2001,5( 1) :4-7.
  • 9Pawlak Z. Rough Sets and Intelligent Data Analysis[ J]. Information Sciences,2002,147(1) :1-12.
  • 10Huang Z, Lu X, Duan H. Context-aware Recommendation U-sing Rough Set Model and Collaborative Filtering[ J]. Artificial Intelligence Review,2011,35(1) :85-99.

共引文献31

同被引文献54

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部