期刊文献+

基于LeNet-5卷积神经网络的车牌字符识别 被引量:7

Research on license plate character recognition based on LeNet-5 convolutional neural network
在线阅读 下载PDF
导出
摘要 针对车牌字符类别多、背景复杂等特点,以卷积神经网络LeNet-5模型为基础,通过去除全连接层F6层以及增加卷积层C1和C3层特征图的数目改进网络结构,通过字符分割,大小归一化、去除噪声、二值化、字符区居中、去除复杂背景等预处理,构建神经网络模型。结果表明:简化后的LeNet-5神经网络模型比传统的LeNet-5神经网络模型更为简单,其车牌字符识别算法准确率为99.96%。该研究对提高车牌字符识别的准确性提供了一定的参考。 This paper is a response to many types of license plates and more complex background. The study based on the LeNet-5 model of convolution neural network involves improving the network structure by removing F 6 layer of full connection layer and increasing the number of C 1 and C 3 layer feature maps of convolution layer;constructing the neural network model by preprocessing methods such as character segmentation, size normalization, noise removal, binarization, character area centralization, and complex background removal. The results show that the simplified LeNet-5 neural network model proves simpler than the traditional LeNet-5 neural network model, and could provide the license plate character recognition algorithm with the accuracy of 99.96%. This study could serve as a reference for improving the accuracy of license plate character recognition.
作者 赵艳芹 童朝娣 张恒 Zhao Yanqin;Tong Chaodi;Zhang Heng(School of Computer & Information Engineering, Heilongjiang University of Science &Technology, Harbin 150022, China)
出处 《黑龙江科技大学学报》 CAS 2019年第3期382-386,共5页 Journal of Heilongjiang University of Science And Technology
基金 中国煤炭工业协会指导项目(MTKJ2014-275)
关键词 卷积神经网络 字符识别 图像处理 LeNet-5 convolutional neural network characterrecognition image processing LeNet-5
  • 相关文献

参考文献13

二级参考文献63

共引文献166

同被引文献75

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部