期刊文献+

Removal of Cd(Ⅱ)from dilute aqueous solutions by complexation–ultrafiltration using rotating disk membrane and the shear stability of PAA–Cd complex 被引量:2

在线阅读 下载PDF
导出
摘要 Removal of cadmium(Ⅱ) ions from dilute aqueous solutions by complexation–ultrafiltration using rotating disk membrane was investigated. Polyacrylic acid sodium(PAAS) was used as complexation agent, as key factors of complexation, pH and the mass ratio of PAAS to Cd^(2+)(P/M) were studied, and the optimum complexation–ultrafiltration conditions were obtained. The effects of rotating speed(n) on the stability of PAA–Cd complex was studied with two kinds of rotating disk, disk Ⅰ(without vane) and disk Ⅱ(with six rectangular vanes) at a certain range of rotating speed. Both of the rejection could reach 99.7% when n was lower than 2370 r·min^(-1) and 1320 r·min^(-1), for disk I and disk Ⅱ, respectively. However, when rotating speed exceeds a certain value,the critical rotating speed(n_c), the rejection of Cd(Ⅱ) decreases greatly. The distribution of form of cadmium on the membrane was established by the membrane partition model, and the critical shear rate(γ_c), the smallest shear rate at which the PAA–Cd complex begins to dissociate, was calculated based on the membrane partition model and mass balance. The critical shear rates(γ_c) of PAA–Cd complex were 5.9 × 10~4 s^(-1), 1.01 × 10~5 s^(-1),and 1.31 × 10~5 s^(-1) at pH = 5.0, 5.5, and 6.0, respectively. In addition, the regeneration of PAAS was achieved by shear induced dissociation and ultrafiltration. Removal of cadmium(Ⅱ) ions from dilute aqueous solutions by complexation–ultrafiltration using rotating disk membrane was investigated. Polyacrylic acid sodium(PAAS) was used as complexation agent, as key factors of complexation, pH and the mass ratio of PAAS to Cd^(2+)(P/M) were studied, and the optimum complexation–ultrafiltration conditions were obtained. The effects of rotating speed(n) on the stability of PAA–Cd complex was studied with two kinds of rotating disk, disk Ⅰ(without vane) and disk Ⅱ(with six rectangular vanes) at a certain range of rotating speed. Both of the rejection could reach 99.7% when n was lower than 2370 r·min^(-1) and 1320 r·min^(-1), for disk I and disk Ⅱ, respectively. However, when rotating speed exceeds a certain value,the critical rotating speed(n_c), the rejection of Cd(Ⅱ) decreases greatly. The distribution of form of cadmium on the membrane was established by the membrane partition model, and the critical shear rate(γ_c), the smallest shear rate at which the PAA–Cd complex begins to dissociate, was calculated based on the membrane partition model and mass balance. The critical shear rates(γ_c) of PAA–Cd complex were 5.9 × 10~4 s^(-1), 1.01 × 10~5 s^(-1),and 1.31 × 10~5 s^(-1) at pH = 5.0, 5.5, and 6.0, respectively. In addition, the regeneration of PAAS was achieved by shear induced dissociation and ultrafiltration.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第3期519-527,共9页 中国化学工程学报(英文版)
基金 Supported by the National Natural Science Foundation of China(21476265)
  • 相关文献

同被引文献14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部