期刊文献+

拟牛顿布谷鸟混合算法 被引量:3

Quasi-Newton Cuckoo Hybrid Algorithm
在线阅读 下载PDF
导出
摘要 论文将拟牛顿算法和布谷鸟算结合,建立了一种混合的算法。算法首先利用布谷鸟算法进行寻优,把当代最好解作为拟牛顿法的初始点,再利用拟牛顿法对其进行优化。混合算法发挥了布谷鸟算法的全局搜索性和拟牛顿法的局部强搜索性能,同时也弥补了布谷鸟算法后期搜索效率低和拟牛顿法对初始点敏感的不足。8个测试函数结果表明,混合算法具有很高的求解精度。 In this paper,combined with the quasi-Newton algorithm and the combination of cuckoo,a hybrid algorithm is es. tablished. Firstly,the algorithm is used to optimize the cuckoo algorithm,and the best point of the contemporary is taken as the ini. tial point of the quasi-Newton method,and then the quasi-Newton method is used to optimize it twice. The hybrid algorithm plays a role in the global search of the cuckoo optimization algorithm and the local strong search performance of the quasi-Newton method. It also overcomes the cuckoo algorithm and Quasi-Newton's shortcomings. The results of eight test functions show that the hybrid al. gorithm has a high accuracy.
作者 宋庆庆 贺兴时 郭旭 SONG Qingqing;HE Xingshi;GUO Xu(School of Science,Xi'an Polytechnic University,Xi'an 710048)
出处 《计算机与数字工程》 2019年第3期516-519,共4页 Computer & Digital Engineering
基金 西安市教育科技重大招标项目(编号:2015ZB-ZY04) 陕西省软科学研究计划项目(编号:2014KRM2801)资助
关键词 布谷鸟算法 拟牛顿算法 梯度 T检验 cuckoo algorithm quasi-Newton algorithm gradient T test
  • 相关文献

参考文献6

二级参考文献54

  • 1毕荣山,杨霞,谭心舜,郑世清.改进的微粒群优化算法在过程综合中的应用[J].计算机与应用化学,2004,21(4):565-568. 被引量:6
  • 2李玉华,王征.蚂蚁算法在日用水量预测中的应用研究[J].哈尔滨工业大学学报,2005,37(1):60-62. 被引量:20
  • 3姜斌,梁士锋.化学工程中多目标遗传算法的应用[J].现代化工,2007,27(7):66-69. 被引量:4
  • 4Eberhart R, Kennedy J.A new optimizer using particle swarm theory[C]//Proc of the 6th Int'l Symposium on Micro Machine and Human Science.Piscataway NJ:IEEE Service Center, 1995: 39-43.
  • 5刘雪英基于传统优化算法和演化算法的函数优化混合算法[D]武汉:华中理工大学,2000.
  • 6Chen Ziyi, Kang Lishan, Zeng Sanyou.An algorithm for solving constrained function optimization problems on multi-Parent cross- over operator[C]//Kang Lishan.Progress in Intelligence Computa-tion and Applications, Proceeding of ISICA 2005,Wuhan, China, 2005:190-197.
  • 7Shi Y,Ebethart R C.Empirical study of particle swarm optimiza- tion[C]//Proceeding of the World Multiconference on Systemics Cybernetics and Informatics,Orlando,FL,2000:1945-1950.
  • 8Shi Y, Ebethart R C.A modified particle swarm optimizer[C]// Proceedings of the 1998 Conference of Evolutionary Computa- tion.Piscataway,NJ:EEE Press, 1998:69-73.
  • 9BONABEAU E, DORIGO M, THERAULAZ G. Inspiration for optimization from social insect behavior[ J ]. Nature, 2000, 406 (6) : 39 - 42.
  • 10Simon Haykin. Neural Networks A Comprehensive Foundation[ M].北京:清华大学出版社,2001.

共引文献59

同被引文献27

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部