期刊文献+

燃煤电厂SCR烟气脱硝催化剂寿命预测研究 被引量:5

Life prediction of SCR flue gas denitration catalyst in coal-fired power plants
在线阅读 下载PDF
导出
摘要 为保证燃煤电厂烟气脱硝系统的安全、稳定运行,需要制定科学合理的选择性催化还原(SCR)催化剂寿命预测方案。SCR催化剂失效是多个物理和化学因素共同作用的结果,难以用传统的物理模型或数学公式对其失活程度进行预测。本研究针对电厂大数据特性,对原始数据进行预处理,建立了曲线拟合、灰色预测、BP神经网络、灰色神经网络4种预测模型。实例对比分析发现:数据预处理可以提高预测精度;当数据满足等时距特性时,灰色神经网络优化后的直接输出模型预测精度较高;当数据不满足等时距特性时,使用BP神经网络模型预测效果更好。 In order to ensure the safe and stable operation of denitrification system in coal-fired power plants, a scientific and reasonable life prediction plan must be formulated for the SCR catalysts. The deactivation of the SCR catalysts is determined by the combined effects of multiple physical and chemical factors. Therefore, it is difficult to predict the catalysts5 service life by using conventional physical models and mathematical formulas. According to the characteristics of big data in power plants, this article preprocessed the raw data and established four prediction models, including curve fitting model, grey prediction model, BP neural network model and grey neural network model. Through case analysis, it is found that data preprocessing can improve the prediction accuracy. Generally, the optimized direct output model of the grey neural network shows high accuracy for the data that met the equidistant time requirement. Whereas, the BP neural network model can achieve better prediction results for the non-equidistant time data.
作者 唐诗洁 陆强 王则祥 吴昱廷 董长青 杨勇平 TANG Shijie;LU Qiang;WANG Zexiang;WU Yuting;DONG Changqing;YANG Yongping(National Engineering Laboratory for Biomass Power Generation Equipment,North China Electric Power University,Beijing 102206,China)
出处 《热力发电》 CAS 北大核心 2019年第3期61-68,共8页 Thermal Power Generation
基金 国家重点基础研究发展计划(973计划)项目(2015CB251501) 北京市科技新星(Z171100001117064) 霍英东教育基金会(161051)~~
关键词 烟气脱硝系统 SCR催化剂 寿命预测 曲线拟合 灰色预测 BP 神经网络 灰色神经网络 flue gas denitration system SCR catalyst life prediction curve fitting grey model prediction BP neural network grey neural network
  • 相关文献

参考文献16

二级参考文献119

共引文献292

同被引文献87

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部