期刊文献+

基于可变形部件改进模型的夜间车辆检测方法 被引量:5

Night Vehicle Detection Method Based on Improved Deformable Parts Model
在线阅读 下载PDF
导出
摘要 针对可变形部件模型在夜间车辆检测中精确度低、检测速度慢的问题,提出基于可变部件改进模型的检测方法。在训练阶段采用Gamma预处理对夜间车辆样本进行校正,得到物体的梯度模型。在测试阶段利用一种基于(R-B)色差特征的显著性区域检测方法,通过减少待检测区域的面积,降低运算复杂度。针对夜间部分场景出现遮挡的情况,采用一种自适应权重的参数分配策略,给重要的特征部件分配较大的权重值。实验结果表明,改进后的检测方法准确率达95.12%,召回率达91.50%,平均每帧检测时间为48 ms,具有较好的实时性和鲁棒性。 In order to solve the problem of low accuracy and slow detection speed of Deformable Parts Model(DPM)at night,an improved method based on DPM is proposed.In the training stage,use the Gamma preprocessing to correct the vehicle samples at night,and train the gradient model of the objects.In the testing phase,a method of saliency region detection based on(R-B)chromatic aberration difference is proposed,which reduces the computation complexity by decreasing the area of the region to be detected.A parameter allocation of adaptive weight is proposed,which assigns large weight values to the important feature parts.Experimental results show that the improved detection method has a precision rate of 95.12%,a recall rate of 91.50%,an average detection time of 48 ms per frame,and it has better real-time performance and robustness.
作者 孙营 王波涛 SUN Ying;WANG Botao(Department of Information,Beijing University of Technology,Beijing 100124,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第3期202-206,共5页 Computer Engineering
基金 北京市教委项目(JJ002790200801)
关键词 可变形部件模型 Gamma预处理 WPCA特征降维 显著性区域检测 自适应权重 Deformable Parts Model(DPM) Gamma preprocessing WPCA feature reduction saliency region detection adaptive weight
  • 相关文献

参考文献5

二级参考文献29

  • 1杨金锋,杨国庆,吴仁彪.减少光照影响的自适应Gamma矫正方法[J].信号处理,2005,21(z1):261-264. 被引量:14
  • 2刘勃,周荷琴,魏铭旭.基于颜色和运动信息的夜间车辆检测方法[J].中国图象图形学报(A辑),2005,10(2):187-191. 被引量:32
  • 3葛广英.基于SVM的车型检测和识别算法[J].计算机工程,2007,33(6):6-8. 被引量:15
  • 4Schreiner K. Night Vision: infrared takes to the road [ J ]. IEEE Computer Graphics and Applications, 1999,19 ( 5 ) :6 - 10.
  • 5Tsuji T, Hattori H, Watanabe M, et al. Development of night-vision system[J]. IEEE Transactions on Intelligent Transportation Systems,2002,3(3) :203 -209.
  • 6Fay D A, Waxman A M, Aguilar M, et al. Fusion of multi-sensor imagery for night vision: color visualization, target learning and search [ A ]. In: Proceedings of the Third International Conference on Information Fusion[ C ], Paris, 2000 :TuD3 _ 3 - TuD3 _ 10.
  • 7Das S, Zhang Y L, Krebs W K. Color night vision for navigation and surveillance[ A]. In: Proceedings of the Fifth Joint Conference on Information Sciences [ C ], Atlantic City, New Jersey, USA, 2000:746 - 749.
  • 8Taktak R, Dufaut M, Husson R. Vehicle detection at night using image processing and pattern recognition [ A ]. In: Proceedings of IEEE International Conference of Image Processing [ C ], Austin,Texas, USA, 1994:296 - 300.
  • 9Cucchiara R, Piccardi M. Vehicle detection under day and night illumination [ A ]. In: Proceedings of Third International ICSC Symposia on Intelligent Industrial Automation, Special Session on Vision Based Intelligent Systems for Surveillance and Traffic Control [C], Genoa, Italy, 1999:789 -794.
  • 10Finlayson G,Funt B,Bamard J.Color constancy under a varying illumination[C]//Proceedings of International Conference on Computer Vision.Washington DC,USA:IEEE Computer Society Press,1995:720-725.

共引文献48

同被引文献53

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部