期刊文献+

基于深度卷积神经网络的无人机识别方法研究 被引量:9

Research on UAV Recognition Method Based on DCNN
在线阅读 下载PDF
导出
摘要 针对现有无人机识别准确率不高、难以从视频图像中准确提取无人机图像、难以对无人机分类等问题,利用深度卷积神经网络自行学习图像特征的优势,提出了一种基于深度卷积神经网络的无人机识别方法。首先使用SSD算法对视频图像做无人机目标检测;然后通过训练一个基于VGG16的学习网络,得到一个高效识别模型;将检测到的无人机图片送入VGG16模型进行特征提取;最后完成多种无人机间的分类。在网络模型优化阶段采用了BP算法,提高了识别方法的鲁棒性。实验结果表明,该方法具有较高的识别准确率和良好的工程应用前景。 Deep Convolutional Neural Network(DCNN)can extract the image features automatically.An Unmanned Aerial Ve hicle(UAV)recognition method based on DCNN is proposed to solve the problems of low detection accuracy,difficulty in accurate ly extracting the UAV picture from the video,and classifying of different UAVs.Firstly,the UVA targets are detected from the video by using Single Shot MultiBox Detector(SSD)algorithm.Then an efficient model of recognition is obtained through training a learn ing network based on Visual Geometry Group(VGG)16.The UVA detected images are put into VGG16 model for feature extrac tion.Finally,the classification of different UAVs is accomplished.Back Propagation(BP)algorithm is introduced to improve the ro bustness of the method in network model optimizing phase.Experiments show that the method has higher recognition rate and better engineering application.
作者 刘佳铭 LIU Jiaming(Navy Equipment Department,Beijing 100071)
机构地区 海军装备部
出处 《舰船电子工程》 2019年第2期22-26,共5页 Ship Electronic Engineering
关键词 深度卷积神经网络 无人机分类 无人机识别 特征提取 识别模型 deep convolutional neural network UAV classification UAV recognition feature extraction recognition model
  • 相关文献

参考文献8

二级参考文献44

  • 1明冬萍,骆剑承,周成虎,王晶.基于简化随机场模型的高分辨率遥感影像分割方法[J].计算机工程与应用,2004,40(26):28-30. 被引量:4
  • 2明冬萍,骆剑承,沈占锋,汪闽,盛昊.高分辨率遥感影像信息提取与目标识别技术研究[J].测绘科学,2005,30(3):18-20. 被引量:109
  • 3Hideki N, Mahdad N S, Eiji K. MRF-based Texture Segmentation using Wavelet Decomposed Images [ J ]. Pattern Recognition ,2002, 35 (4) : 771-782.
  • 4Tseng D C, Lai C C . A Genetic Algorithm for MRF-based Segmentation of Muhi-spectral Textured Images [ J ]. Pattern Recognition Letters. 1999, 20(14) : 1499-1510.
  • 5Blake A, Zisserman A. Visual Reconstruction [ M ]. Cambridge, MA : The MIT Press, 1987.
  • 6Chellappa R. Two-Dimensional Discrete Gaussian Markov Random Field Models for Image Processing [C] //Kanal L N, Rosenfeld A. Progress in Pattern Recognition. Amsterdam: Elsevier Science Publishers BV, 1985, 2: 79-112.
  • 7Manjunath B S, Chellappa R. Unsupervised Texture Segmentation Using Markov Random Field Models [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(5) : 478-482.
  • 8Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition [ J ]. Data Mining and Knowledge Discovery, 1998, 2: 121-167.
  • 9Scholkopf B, Burges C J C, Smola A J. Advances in Kernel Methods : Support Vector Learning [ M ]. Cambridge, MA: The MIT Press, 1999.
  • 10Cecilio A, Andreu C K. A Multi-class Support Vector Machine [C] // ECML 2000, LNAI, 2000, 1810: 31-38.

共引文献104

同被引文献54

引证文献9

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部