期刊文献+

基于CFA插值特性不一致的图像真伪鉴别 被引量:8

Identifying Image Authenticity Based on CFA Inconsistency of Interpolation Characteristics
在线阅读 下载PDF
导出
摘要 单传感器数码相机一般通过颜色滤波阵列(color filter array, CFA)插值得到彩色图像.利用CFA插值特性检测图像篡改,根据插值图像与理想全色图像的频谱差异分块提取频谱变化和色度失真特征以反映CFA插值特性,计算重插值前后的插值特性变化作为取证特征;使用支持向量机(support vector machine, SVM)分类并根据相邻块间取证特征的不一致来鉴别图像真伪.实验结果表明:该方法可以有效辨别篡改图像,且对JPEG压缩有较好的鲁棒性. Single-sensor digital cameras generally acquire the missing color components by color filter array(CFA)interpolation.In this work,CFA interpolation characteristics are exploited to identify image forgery.Using the differences in frequency spectrum between interpolated images and ideal full color ones,the interpolation characteristics are described by block spectral change and chrominance artifacts features.The feature difference between test images and their re-interpolated version are computed as forensic features.Finally,support vector machine(SVM)is exploited to classify the authentic and tampered images using the block-wise inconsistency of forensic features.Experimental results verify effectiveness of the proposed method and its robustness against JPEG compression.
作者 苏文煊 方针 SU Wen-xuan;FANG Zhen(School of Communication and Information Engineering,Shanghai University,Shanghai 200444,China)
出处 《应用科学学报》 CAS CSCD 北大核心 2019年第1期33-40,共8页 Journal of Applied Sciences
基金 国家自然科学基金(No.U1536109)资助
关键词 篡改检测 颜色滤波阵列插值 频谱相关性 支持向量机 forgery detection color filter array(CFA)interpolation spectral correlation support vector machine(SVM)
  • 相关文献

参考文献1

二级参考文献18

  • 1CAO H, KOT A C. Accurate detection of demosaicing regularityfor digital image forensics[J]. IEEE Transactions Information Forensics and Security, 2009, 4(4): 899-910.
  • 2CHEN M, FRIDRICH J, GOL J M, LUKAS J. Determining image origin and integrity using sensor noise Pl. IEEE Transactions on Information Security and Forensics, 2008, 3(1) : 74-90.
  • 3Hsu Y F, CHANG S F. Camera response functions for image forensics: an automatic algorithm for splicing detection[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(4): 816-825.
  • 4POPESCU A C, FARID H. Exposing digital forgeries by detecting traces of resampling[J]. IEEE Transactions on Signal Processing, 2005, 53(2): 758-767.
  • 5GALLAGHER A C. Detection of linear and cubic interpolation in JPEG compressed images[CII /Proceedings of the Second Canadian Conference on Computer and Robot Vision, USA, 2005: 65-72.
  • 6GALLAGHER A C, CHEN T. Image authentication by detecting traces of demosaicing[C]/ /IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008: 1-8.
  • 7FERRARA P, BIANCHI T, de ROSA A. Image forgery localization via fine-grained analysis of CFA artifacts[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(5): 1566-1577.
  • 8LI L, XUE J, WANG X. A robust approach to detect digital forgeries by exploring correlation patterns[J]. Pattern Analysis and Applications, 2013: 1-15.
  • 9Ho J S, Au 0 C, ZHOU J, Guo Y. Inter-channel demosaicking traces for digital image forensics[C]/ /IEEE International Conference on Multimedia and Expo, Suntec City, 2010: 1475-1480.
  • 10GUNTURK B K, ALTUNBASAK Y R, MERSEREAU M. Color plane interpolation using alternating projections[J]. IEEE Transactions on Image Processing, 2002, 11(9): 997-1013.

共引文献4

同被引文献61

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部