期刊文献+

基于线性阈值模型的动态社交网络影响最大化算法 被引量:2

Influence Maximization Algorithm for Dynamic Social Networks Based on Linear Threshold Model
在线阅读 下载PDF
导出
摘要 针对随时间进化的动态社交网络展开影响最大化问题的研究,目标是基于线性阈值传播模型,挖掘影响力最大的k个种子用户,从种子用户发起传播,最大化影响传播范围。提出一种基于线性阈值模型的动态社交网络影响最大化算法(linear threshold dynamic influence maximization,LTDIM)。首先,给出动态社交网络影响最大化问题的形式化定义,提出利用活边路径获取初始种集的方法;然后,分析网络的各种拓扑变化,提出种集的增量式更新方法;最后,基于节点度和影响力增量提出DP(degree pruning)和IIP(influence increment pruning)剪枝策略进一步提高时间效率。实验使用4个真实的社交网络数据,考察在8个网络快照上算法的运行时间和影响传播范围。实验结果表明,本文算法的影响传播范围接近于静态启发式算法,运行时间大幅度减少,验证了算法的时间高效性和可扩展性。 In order to solve the influence maximization problem in evolving social network,a dynamic influence maximization algorithm based on the linear threshold model was proposed in this paper.The goal of influence maximization was to mine out the top k most influential seed users and maximize the spread of influence through them.An algorithm called LTDIM was proposed based on the linear threshold model.Specially,firstly,the formal definition of dynamic influence maximization problem was given and the initial seeding method based on alive edge path was proposed.Then,according to the analysis of various network topology changes,an incremental seeds updating algorithm was presented.Finally,to further improve the time efficiency,two pruning strategies DP(degree pruning)and IIP(influence increment pruning)based on nodes degree and influence increment were devised.Experiments on the eight network snapshots of four real social networks evaluated the algorithm performance in terms of running time and influence spread.Experimental results demonstrated that compared with the state-of-the-art static heuristic algorithms,the algorithms proposed in the paper can achieve a great deal of speedup in running time while maintaining matching performance in terms of influence spread.
作者 朱敬华 李亚琼 王亚珂 杨艳 ZHU Jinghua;LI Yaqiong;WANG Yake;YANG Yan(School of Computer Sci.and Technol.,Heilongjiang Univ.,Harbin 150080,China)
出处 《工程科学与技术》 EI CAS CSCD 北大核心 2019年第1期181-188,共8页 Advanced Engineering Sciences
基金 国家自然科学基金资助项目(61100048 61370222) 黑龙江省自然科学基金资助项目(F2016034 F2018028)
关键词 动态社会网 影响最大化 线性阈值模型 剪枝策略 dynamic social networks influence maximization linear threshold model pruning strategy
  • 相关文献

参考文献1

二级参考文献23

  • 1Domingos P, Richardson M. Mining the network value of customers//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2001:57-66.
  • 2Richardson M, Domingos P. Mining knowledge-sharing sites for viral marketing//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002:61-70.
  • 3Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2003= 137-146.
  • 4Leskovec J, Krause A, viprin C, et al. Cost-effective outbreak detection in networks//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007 420-429.
  • 5Goyal A, Lu Wei, Lakshmanan L V S. CELFT+ : Optimizing the greedy algorithm for influence maximization in social networks//Proceedings of the 20th International Conference Companion on World Wide Web. Hyderabad, India, 2011 47-48.
  • 6Leskovec J. Dynamics of Large Networks. Pittsburgh, USA: Addison Wesley Publishing Company, 2008.
  • 7Kimura M, Saito K, Nakano R. Extracting influential nodes for information diffusion on a social network//Proceedings of the 22nd AAAI Conference on Artificial Intelligence and the 19th Innovative Applications of Artificial Intelligence Conference. Vancouver, Canada, 2007 1371-1376.
  • 8Chen Wei, Wang Yajun, Yang Siyu. Efficient influence maximization in social networks//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009:199-208.
  • 9Wang Yu, Cong Gao, Song Guojie, Xie Kunqing. Community- based greedy algorithm for mining top-k influential nodes in mobile social networks//Proeeedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2010.. 1039 1048.
  • 10Barbieri N, Bonchi F, Manco G. Topic-aware social influence propagation models//Proceedings of the 12th IEEE Interna tional Conference on Data Mining. Brussels, Belgium, 2012 : 81-90.

共引文献7

同被引文献12

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部