期刊文献+

基于相似性度量的城市路网实体匹配算法 被引量:3

Urban Road Network Entity Matching Algorithm Based on Similarity Measurement
在线阅读 下载PDF
导出
摘要 城市路网实体匹配是为了在不同数据源中,识别出同一条城市道路实体。由于城市路网数据质量要求较高,数据的表达形式较为复杂,语义信息和道路数据记录方式多样,因此需要构建适合城市路网实体的匹配算法。本文通过对路网数据的语义特征、空间结构特征和城市路网数据特点进行分析,结合现有路网相似度评价策略,提出了综合语义特征相似性度量方法,空间结构相似度计算中融入道路实体方位关系的相似度量,以及路网方向变化角率的计算方法来归一化地评价道路的形状相似度。最后基于加权平均的思想设计了城市路网特征相似性综合评价算法。 The purpose of urban road network entity matching is to identify the same city road entity in different data sources.Due to the high quality of urban road network data and the complexity of expression,semantic features of road data records are inconsistent,Therefore,it is necessary to construct a special entity matching algorithm for urban road network.Based on the analysis of the network data semantic and spatial structure,this paper combines the characteristics of urban road network data and existing network similarity evaluation,a semantic similarity measure is proposed,spatial orientation relation factor of road entity is incorporated into the similarity measure of road network spatial structure,and the method of calculating the angular rate of change of road network direction is put forward to normalize the shape similarity of road.Finally,a comprehensive urban road network similarity evaluation algorithm based on the weighted average method is constructed.
作者 陈万鹏 崔虎平 CHEN Wanpeng;CUI Huping(Institute of Geographic Space Information,Information Engineering University,Zhengzhou 450001,China)
出处 《测绘与空间地理信息》 2018年第12期39-42,46,共5页 Geomatics & Spatial Information Technology
基金 地理信息工程国家重点实验室开放基金项目(SKLGIE2015-M-4-4) 国家自然科学基金项目(41471336)资助
关键词 城市路网实体 语义特征 空间结构特征 空间方位关系 变化角率 urban road network entity semantic features spatial structure characteristics spatial orientation relation angular rate of change
  • 相关文献

参考文献6

二级参考文献68

  • 1陈军,李志林,蒋捷,赵仁亮.基础地理数据库的持续更新问题[J].地理信息世界,2004,2(5):1-5. 被引量:160
  • 2陈玉敏,龚健雅,史文中.多尺度道路网的距离匹配算法研究[J].测绘学报,2007,36(1):84-90. 被引量:73
  • 3童小华,邓愫愫,史文中.基于概率的地图实体匹配方法[J].测绘学报,2007,36(2):210-217. 被引量:80
  • 4[1]Cobb M,Chung M,Foley H. A rule-based approach for the conflation of attributed vector data [ J ].Geoinformatica, 1998, ( 1 ): 7-35.
  • 5[2]Cobb M. Intelligent database agents for geospatial knowledge integration and management [ DB/OL ].http://sdiagent. st. usm. edu/default. asp, 2000.
  • 6[3]Cowen D J, Shirley L, Jensen J. The update and maintenance of TIGER files from other data sources[DB/OL]. http://www. geog. buffalo. edu/ucgis/nrespri/socar-a. html, 1996.
  • 7[4]Dallal S L. Automated attribution of shapefile data through map merging [ DB/OL ]. http://www. esea. eom/software/p306.html, 1998.
  • 8[5]ESEA Inc. Conflation FAQ[DB/OL]. http://www.conflation. com/conflati. htm.
  • 9[6]Filin S, Doytsher Y. A linear mapping approach to map conflation: matching of polylines [ J ]. Surveying and Land Information Systems. 1999,59(2) : 107-114.
  • 10[7]Filin S, Doytsher Y. A liner conflation approach for the integration of photogrammetric information and GIS data[A]. In: ISPRS[ C], 2000, Vol. 33, Amsterdam: ( http://www. geo. tudelft. nl/frs/staff/sagi/pub/ISPRS2000-filin-doytsher-paper-528. pdf).

共引文献172

同被引文献54

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部