期刊文献+

基于深度学习的快速植物图像识别 被引量:32

Deep Learning Based Fast Plant Image Recognition
在线阅读 下载PDF
导出
摘要 植物分类在形态、颜色和纹理上具有高度的相似性和密集的细节信息,传统的机器学习方法无法满足这些大样本的特征提取训练,识别种类与精度受到限制。深度学习可以有效地解决植物图像识别在种类数量、准确度和速度上的难点。本文提出了基于优化的P-AlexNet模型的植物识别算法,基于卷积神经网络(CNN)中的AlexNet网络模型进行优化处理,提高模型的泛化能力、细节特征的表征能力以及识别精度。利用迁移学习热启动更新植物识别种类,利用GPU并行计算加速模型训练和图片识别速度。针对206类植物图片,训练得到验证集精度达到86.7%的模型。以此模型为基础,开发了一款智能植物图像识别平台,包含了Web网站以及Android和IOS的App应用。Web端实验测试结果表明,检测时间平均为1.282s,具有较高的准确性和泛化性以及快速的识别速度。 Plants have high similarity and detail information in morphology,color,and texture.Traditional machine learning methods cannot meet the demands of feature extraction from many plants and they only recognize several types of plants,while deep learning can effectively deal with these difficulties,including amount,accuracy and speed of plant images recognition.This paper proposes a plant recognition algorithm based on the optimized P-AlexNet model.The traditional AlexNet mainly considered the classification of images with large difference between targets and ignored the difference of plant images.Therefore,more attention should be paid to distinguish deeper features when designing the network structure.By using inception module instead of traditional convolutional pooling single-channel structure,the proposed model can increase the representable range of underlying texture features.The green channel is separated from the remaining two channels such that the extracted features can characterize the information of leaf texture and the structure of the flower to attain better interpretability of the network.The contrastiveloss function in the siamese network is utilized to improve the recognition accuracy among plant categories after full connection layer.Based on the AlexNet network model in CNN,the generalization and the characterization of the detail features and the recognition precision of the model can be effectively improved.The concept of migration learning is employed to update the plant identification and GPU parallel computing is adopted to speed up model training and image recognition speed.The model training uses an image dataset with206plants,composed of Oxford102and Ecust104dataset,and the validation accuracy of the model is86.7%.Based on this proposed model,this paper further develops a platform for intelligent plant image recognition,including Web site and App application of Android and IOS.It is shown from these experiments that the average detection time is1.282s and the higher accuracy and generalization and fast recognition speed can be attained.
作者 张雪芹 陈嘉豪 诸葛晶晶 余丽君 ZHANG Xue-qin;CHEN Jia-hao;ZHUGE Jing-jing;YU Li-jun(School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第6期887-895,共9页 Journal of East China University of Science and Technology
基金 国家自然科学基金(31671006)
关键词 植物识别 卷积神经网络 Alexnet模型 迁移学习 GPU并行计算 plant recognition convolution neural network AlexNet model migration learning GPU parallel computing
  • 相关文献

参考文献4

二级参考文献106

  • 1王晓峰,黄德双,杜吉祥,张国军.叶片图像特征提取与识别技术的研究[J].计算机工程与应用,2006,42(3):190-193. 被引量:114
  • 2Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 3Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 4Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 5Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 6Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 7Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 8Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].
  • 9Samarth S,Sylvian R.Cross domain knowledge transfer using structured representations.In:Proc.of the 21st Conf.on Artificial Intelligence.AAAI Press,2006.506-511.
  • 10Bel N,Koster CHA,Villegas M.Cross-Lingual text categorization.In:Proc.of the European Conf.on Digital Libraries.Berlin:Springer-Verlag,2003.126-139.[doi:10.1007/978-3-540-45175-4_13].

共引文献536

同被引文献282

引证文献32

二级引证文献175

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部