期刊文献+

Factors influencing direct shoot regeneration from leaves,petioles,and plantlet roots of triploid hybrid Populus sect.Tacamahaca

Factors influencing direct shoot regeneration from leaves, petioles,and plantlet roots of triploid hybrid Populus sect.Tacamahaca
在线阅读 下载PDF
导出
摘要 Since the generation of full-sib artificial triploid families, rapid clone establishment and genetic improvements have been needed. Here, we report an in vitro method of direct shoot regeneration of a triploid hybrid poplar[(Populus simonii × P. nigra ’Italica’)×(P. × ’popularis’)]. Using different randomized block designs, we selected one triploid to evaluate the explant type, optimal concentrations of plant growth regulators and agar, and culture time under light or dark conditions over 60 days. The highest rate of shoot induction, 80.0%, was obtained using Murashige and Skoog(MS) medium supplemented with 0.2 mg/L benzyladenine, 0.04 mg/L naphthaleneacetic acid(NAA), and 5.5 g/L agar for the first 30 days in the dark,then 3 g/L agar for the next 30 days in light. This last medium yielded the best rate of shoot induction(6.32 shoots/explant). These three media were also used to evaluate the influence of the genotypes of the parents and hybrid triploids on regeneration. Two parents and three of the four full-sib triploids were regenerated successfully;different genotypes and explant types significantly affected the rate of shoot induction and average number of shoots.Leaves but not petioles were a suitable explant. One genotype produced the highest rate of shoot induction of 96.67%.Half-strength MS medium supplemented with 0.2 mg/L indole butyric acid and 0.04 mg/L NAA was the most effective for rooting; rooting rate was 96.67%, survival rate of transplants was 73.33%, and rooting frequency surpassed 85% for each genotype. Overall, this in vitro regeneration system will be useful for the propagation and genetic modification of triploid poplars. Since the generation of full-sib artificial triploid families, rapid clone establishment and genetic improvements have been needed. Here, we report an in vitro method of direct shoot regeneration of a triploid hybrid poplar[(Populus simonii × P. nigra 'Italica')×(P. × 'popularis')]. Using different randomized block designs, we selected one triploid to evaluate the explant type, optimal concentrations of plant growth regulators and agar, and culture time under light or dark conditions over 60 days. The highest rate of shoot induction, 80.0%, was obtained using Murashige and Skoog(MS) medium supplemented with 0.2 mg/L benzyladenine, 0.04 mg/L naphthaleneacetic acid(NAA), and 5.5 g/L agar for the first 30 days in the dark,then 3 g/L agar for the next 30 days in light. This last medium yielded the best rate of shoot induction(6.32 shoots/explant). These three media were also used to evaluate the influence of the genotypes of the parents and hybrid triploids on regeneration. Two parents and three of the four full-sib triploids were regenerated successfully;different genotypes and explant types significantly affected the rate of shoot induction and average number of shoots.Leaves but not petioles were a suitable explant. One genotype produced the highest rate of shoot induction of 96.67%.Half-strength MS medium supplemented with 0.2 mg/L indole butyric acid and 0.04 mg/L NAA was the most effective for rooting; rooting rate was 96.67%, survival rate of transplants was 73.33%, and rooting frequency surpassed 85% for each genotype. Overall, this in vitro regeneration system will be useful for the propagation and genetic modification of triploid poplars.
出处 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第6期1533-1545,共13页 林业研究(英文版)
基金 supported by the Project of National Natural Science Foundation of China(31370658) Medium and Long Scientific Research Project for Young Teachers in Beijing Forestry University(2015ZCQ-SW-02) National Key R&D Program of China(2017YFD0600404-1) Program for Changjiang Scholars and Innovative Research Team in University(IRT13047) the Project of Beijing Gardening and Greening Bureau(CEG-2016-01)
关键词 Direct organogenesis Dark incubation Two-step culture Direct organogenesis Dark incubation Two-step culture
  • 相关文献

参考文献13

二级参考文献130

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部