期刊文献+

Osmoregulators in Hymenaea courbaril and Hymenaea stigonocarpa under water stress and rehydration

Osmoregulators in Hymenaea courbaril and Hymenaea stigonocarpa under water stress and rehydration
在线阅读 下载PDF
导出
摘要 The objective of this work was to evaluate the effect of different water deficiency and rehydration levels on the concentrations of osmoregulators in two plant species(Hymenaea courbaril and H. Stigonocarpa) in the Amazon. We adopted a 2×5×5 factorial system,referring to 2 species(H. courbaril and H. stigonocarpa)and 5 stages of hydration and rehydration. The five hydration and rehydration stages were established in:(1)Control treatment E0;(2) Plants with 13 days of stress after incubation—E13;(3) Plants with 26 days of stress E26;(4)The plants that were established after 26 days after incubation and rehydrated for two days(RD2);(5) rehydrated for two days(RD4). The plants that were established after 26 days after incubation and rehydrated for four days. The experiment totaled fifty young plants with five replicates.Biochemical measurements were performed at the beginning of the experiment(E0) at 13(E13) and 26(E26) days after the water stress, in which the plants were rehydrated,repeating the analyses after two(RD2) and four(RD4)days. Both species increased the sucrose concentration by18%, with a decrease of 52% in starch content. The RD4 time presented the highest mean starch concentration(0.19 mmol g-1 of the residue for H. courbaril and0.27 mmol g;of residue for H. stigonocarpa). Increased proline concentrations were recorded for controls until RD2 for both species. For glycine betaine, the highest increases in treatments E26 and RD2 were observed for the H. courbaril species. Our rehydration period was not sufficient for total recovery of pre-stress concentrations of all studied solutes. The objective of this work was to evaluate the effect of different water deficiency and rehydration levels on the concentrations of osmoregulators in two plant species(Hymenaea courbaril and H. Stigonocarpa) in the Amazon. We adopted a 2×5×5 factorial system,referring to 2 species(H. courbaril and H. stigonocarpa)and 5 stages of hydration and rehydration. The five hydration and rehydration stages were established in:(1)Control treatment E0;(2) Plants with 13 days of stress after incubation—E13;(3) Plants with 26 days of stress E26;(4)The plants that were established after 26 days after incubation and rehydrated for two days(RD2);(5) rehydrated for two days(RD4). The plants that were established after 26 days after incubation and rehydrated for four days. The experiment totaled fifty young plants with five replicates.Biochemical measurements were performed at the beginning of the experiment(E0) at 13(E13) and 26(E26) days after the water stress, in which the plants were rehydrated,repeating the analyses after two(RD2) and four(RD4)days. Both species increased the sucrose concentration by18%, with a decrease of 52% in starch content. The RD4 time presented the highest mean starch concentration(0.19 mmol g-1 of the residue for H. courbaril and0.27 mmol g^(-1) of residue for H. stigonocarpa). Increased proline concentrations were recorded for controls until RD2 for both species. For glycine betaine, the highest increases in treatments E26 and RD2 were observed for the H. courbaril species. Our rehydration period was not sufficient for total recovery of pre-stress concentrations of all studied solutes.
出处 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第6期1475-1479,共5页 林业研究(英文版)
基金 supported by the Universidade Federal Rural da Amazonia
关键词 Amazonia Water stress Osmotic adjustment PROLINE SUCROSE Amazonia Water stress Osmotic adjustment Proline Sucrose
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部