期刊文献+

正交匹配追踪和BIC准则的自适应双频段预失真模型优化算法 被引量:1

Adaptive Dual-band Predistortion Model Optimization Algorithm Based on Orthogonal Matching Pursuit and Bayesian Information Criterion
在线阅读 下载PDF
导出
摘要 针对双频段预失真模型复杂度高以及当前的模型优化算法不具有自适应性的问题,提出一种自适应的模型优化算法.采用双频段广义记忆多项式作为预失真模型,通过正交匹配追踪算法对原始模型的基函数项进行排序,每次迭代时用所有已挑选的基函数项构成备选模型,推导了模型输出向量元素服从非独立同分布情况下的贝叶斯信息准则(Bayesian Information Criterion,BIC),并将BIC值最小的备选模型作为优化后模型,从而在原始模型稀疏度和拟合误差门限未知情况下,实现了模型的自适应优化.结果表明:优化后模型与原始模型相比,二者分别预失真后的信号在邻道功率比和归一化均方误差方面均非常接近,预失真效果良好,而模型的系数量减少了75%以上. The dual-band predistortion models suffer from high complexity and non-adaptability of optimization algorithms.To address this issue,this paper proposes an adaptive optimization algorithm for dual-band predistortion model with reduced complexity.We use dual-band general memory polynomial(DB-GMP)as the predistortion model where all basis function terms of the original DB-GMP model are sorted by orthogonal matching pursuit algorithm.In each iteration,all selected basis function terms help to construct an alternative model.We then derive the Bayesian information criterion(BIC)when output vector elements of the DB-GMP model are with non-independent identical distributions,and the model with smallest BIC value is treated as the optimized model.Finally,we achieve the proposed algorithm without the information of model sparsity and fitting error threshold.Simulation results show that compared with the original DB-GMP model,the coefficient number of the optimized model is reduced by more than 75%,while both the models after predistortion have almost the same level of adjacent channel power ratio and normalized mean squared error,leading to good predistortion performance.
作者 吴林煌 苏凯雄 王琳 陈志峰 陈平平 WU Lin-huang;SU Kai-xiong;WANG Lin;CHEN Zhi-feng;CHEN Ping-ping(College of Physics and Information Engineering,Fuzhou University,Fuzhou,Fujian 350116,China;College of Information Science and Technology,Xiamen University,Xiamen,Fujian 361005,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2018年第9期2149-2156,共8页 Acta Electronica Sinica
基金 国家自然科学基金项目(No.61401099) 福建省教育厅项目(No.JAT170087)
关键词 功率放大器 预失真 稀疏性 正交匹配追踪 贝叶斯信息准则 power amplifier predistortion sparsity orthogonal matching pursuit Bayesian information criterion
  • 相关文献

参考文献4

二级参考文献65

  • 1熊刚,赵惠昌,王李军.海杂波背景下雷达引信的相关检测方法研究[J].电子学报,2004,32(12):1937-1940. 被引量:5
  • 2廖复疆.大功率微波真空电子学技术进展[J].电子学报,2006,34(3):513-516. 被引量:55
  • 3钱业青.一种高效的用于RF功率放大器线性化的自适应预失真结构[J].通信学报,2006,27(5):35-40. 被引量:23
  • 4McLachlan G, Peel D. Finite Mixture Models[ M]. New York: John Wiley Sons,2000.
  • 5W K Hastings. Monto Carlo sampling methods using Markov chains and their Applications [ J]. Biometrika, 1970, 57 (1):97 - 109.
  • 6A P Dempster NML,D B Rubin.Maximum likelihood from Incomplete Data via the EM algorithm[ J ]. Journal of the Royal statistical Society, Series B, 1977,39( 1 ) : 1 - 28.
  • 7Constantinos Constantinopoulos, Michalis K. Titsias, and Aristidis Likas, Bayesian Feature and Model Selection for Gaussian Mixture Models[ J] .WEE Transactions of Pattern Analysis and Machine Intelligence, 2006,6 (28) : 1013 - 1018.
  • 8Nizar Bouguila, Djemel Ziou. A Hybrid Sem Algorithm for High-Dimensional Unsupervised Learning Using a Finite Generalized Dirichlet Mixture [ J ]. IEEE Transactions on Image Processing, 2006,15 ( 9 ) : 2657 - 2668.
  • 9Mario A T Figueiredo, Anil K. Jain. Unsupervised Learning of Finite Mixture Models [ J]. IEEE Transactions of Pattern Analysis and Machine Intelligence,2002,3(24) :381 - 396.
  • 10Bouguila N, Ziou D. High-dimensional unsupervised selection and estimation of a finite generalized dirichlet mixture model based on minimum message length [ J]. IEEE Transactions on Pattem Analysis and Machine Intelligence, 2007,29(10) : 1716 - 1731.

共引文献42

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部