期刊文献+

基于Redis的矢量时空查询算法 被引量:4

Algorithm for vector spatio-temporal queries based on Redis
在线阅读 下载PDF
导出
摘要 鉴于时空数据的矢量查询应用中缺乏对时间维的考虑,基于Redis丰富的数据存储组织方式,提出矢量时空数据的分层存储结构,通过建立空间-时间分级索引,对时空要素对象进行前缀编码,快速过滤、筛选并满足查询几何类型的时空数据,构建时空范围查询方案。经测试,基于Redis的矢量时空数据分层组织及两级索引机制,与Oracle Spatial进行比较,可有效提高查询效率4.5倍,具有良好的并发性,验证了该方法更适用于海量时空数据高效查询与并发处理需求。 There is a lack of time dimension considerations in spatio-temporal queries.Based on the advantage of the rich data structure of Redis,hierarchical storage organization of vector spatio-temporal data was carried out.Based on the organization,a spatial temporal hierarchical index was proposed.The spatio-temporal elements were prefixed by prefix encoding,which were used to rapidly filter and select spatio-temporal data that satisfying several queries.A spatio-temporal range query algorithm was designed.The test results show that the hierarchical organization and index of vector spatio-temporal data based on Redis improve the efficiency of spatio-temporal query efficiency by 4.5 times compared with Oracle Spatial,and it has perfect concurrency performance.The proposed approach is suitable for the efficient querying and concurrent processing of massive spatio-temporal data.
作者 侯海耀 钱育蓉 杜娇 HOU Hai-yao;QIAN Yu-rong;DU Jiao(School of Software,Xinjiang University,Urumqi 830008,China)
出处 《计算机工程与设计》 北大核心 2018年第9期2770-2775,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61562086 61462079 61363083) 新疆"万人计划"后备基金项目(wr2015bj01)
关键词 矢量时空数据 Redis数据库 HILBERT曲线 分级索引 时空范围查询 vector spatio-temporal data Redis Hilbert curve hierarchical index spatio-temporal range query
  • 相关文献

参考文献6

二级参考文献46

  • 1Ousterhout J,Agrawal P,Erickson D,et al.The case for ramclouds:scalable high-performance storage entirely in dram[J].SIGOPS Operating Systems Review,2010,43(4):92-105.
  • 2The Trinity graph engine[EB/OL].[2013-07-20].http://research.microsoft.com/pubs/161291/trinity.pdf.
  • 3Redis:Lightweight key/value store that goes the extra mile[EB/OL].[2013-07-28].http://www.linux-mag.com/id/7496/.
  • 4支撑5亿用户、1.5亿活跃用户的Twitter最新架构详解及相关实现[EB/OL].[2013-07-18].http://www.csdn.net/article/2013-07-11/2816199-architecture-twitter-uses-to-deal-with-150m-active-users.
  • 5Hu L,Yue P,Zhou H X.Geoprocessing in Google Cloud Computing:Case studies[C].2012 First International Conference on Agro-Geoinformatics (Agro-Geoinformatics),Aug,2012.
  • 6Kerr N T.Alternative approaches to parallel GIS processing[D].Arizona State University,2009.
  • 7唐建智.基于云计算的海量空间信息存储与计算研究[D].北京:中国科学院遥感应用研究所,2012.
  • 8Dean J,Ghemawat S.Mapreduce:Simplified data processing on large clusters[C].Proceedings of OSDI,2004,137-150.
  • 9Key-Value stores:A practical overview[EB/OL].[2013-07-25].http://blog.marc-seeger.de/assets/papers/Ultra_Large_Sites_SS09-Seeger_Key_Value_Stores.pdf.
  • 10OGC.OpenGIS simple features specification for SQL revision 1.1[EB/OL].[ 2013-07-20].http://portal.opengeospatial.org/files/?artifact_id=829.

共引文献128

同被引文献42

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部