期刊文献+

随机游走技术在网络生物学中的研究进展 被引量:8

Progress on Random Walk and Its Application in Network Biology
在线阅读 下载PDF
导出
摘要 网络生物学是近年来受到国际学术界广泛关注的学术前沿领域,在疾病研究和药物预测等领域有重要应用.随机游走(Random Walk)又称随机游动或随机漫步,是一种数学统计模型,在金融、物理和社会网络分析中都有广泛应用.近年来逐渐被应用到网络生物学,并在技术上得到了新的发展.本文以生物网络为基础,介绍了随机游走技术及其基本理论,并详细阐述了随机游走技术在网络生物学中的应用,具体包括蛋白质功能预测、关键蛋白质识别、疾病基因预测、疾病相关非编码RNA预测、药物相关预测等.最后讨论了随机游走技术在网络生物学研究中存在的问题以及未来的研究方向. Network biology,as a hot academic frontier field,has gained increasingly wide attention in international academic circles in recent years,which plays an important role in disease research and drug discovery.Random walk is a mathematical model,which is widely used in financial,physical and social network analysis.Recently,it has gradually been applied in network biology,and the model has been improved constantly.Based on the biological network,this study introduces the technology and basic theory of random walk model firstly.Then,the applications of random walk in network biology are presented in detail,which include predicting protein functions,identifying essential proteins,predicting disease gene,discovering disease related non-coding RNAs,discovering disease related things and so on.Finally,some existing problems and future research directions of random walk in network biology research are discussed in this study.
作者 李敏 王晓桐 罗慧敏 孟祥茂 王建新 LI Min;WANG Xiao-tong;LUO Hui-min;MENG Xiang-mao;WANG Jian-xin(School of Information Science and Engineering,Central South University,Changsha,Hunan 410083,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2018年第8期2035-2048,共14页 Acta Electronica Sinica
基金 国家自然科学基金优秀青年项目(No.61622213) 国家自然科学基金面上项目(No.61370024) 国家自然科学基金重点项目(No.61232001)
关键词 随机游走 生物网络 网络生物学 生物信息学 系统生物学 random walk biological network network biology bioinformatics system biology
  • 相关文献

参考文献5

二级参考文献69

  • 1R Milo,S Shen-Orr,S Itzkovitz,et al.Network motifs:Simple building blocks of complex networks[J].Science,2002,298(5594):824-827.
  • 2A Inokuchi,T Washio,H Motoda.An apriori-based algorithm for mining frequent substructures from graph data .Proc of European Conf on Principles of Data Mining and Knowledge Discovery(PKDD 2000) .London,UK:Springer-Verlag,2000.13-23.
  • 3X Yan,J Han.gSpan:graph-based substructure patterns mining .Proceedings of IEEE the 2002 International Conference on Data Mining(ICDM 2002) .Washington DC,USA:IEEE Computer Society,2002.721-724.
  • 4Huan J,Wang W,Prins J.Efficient mining of frequent subgraphs in the presence of isomorphism .Proc of the IEEE International Conference on Data Mining (ICDM 2003) .Washington DC,USA:IEEE Computer Society,2003.549-552.
  • 5M Kuramochi,G Karypis.An efficient algorithm for discovering frequent subgraphs[J].IEEE Transactions on Knowledge and Data Engineering,2004,16(9):1038-1051.
  • 6N Kashtan,S Itzkovitz,R Milo,U Alon.Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs[J].Bioinformatics,2004,20(11):1746-1758.
  • 7S Wernicke.Efficient detection of network motifs[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2006,3(4):347-359.
  • 8H Hu,X Yan,Y Huang,et al.Mining coherent dense subgraphs across massive biological networks for functional discovery[J].Bioinformatics,2005,21(1):213-221.
  • 9Uri Alon Lab.Weizmann Networks .www.weizmann.ac.il/mcb/UriAlon/groupNetworksData.html,2008.
  • 10Wood LD, Parsons DW, Jones S, Lin J, Sj6blom T, Leary R J, Shen D, Boca SM, Barber T, Ptak J. The genomic landscapes of human breast and colorectal cancers. Science, 2007, 318(5853): 1108-1113.

共引文献31

同被引文献49

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部