期刊文献+

Cotorsion Dimension of Weak Crossed Products

Cotorsion Dimension of Weak Crossed Products
在线阅读 下载PDF
导出
摘要 Let H be a finite-dimensional weak Hopf algebra over a field κ and A an associative algebra, and A#;H a weak crossed product. In this paper, a spectral sequence for Ext is constructed which yields an estimate for cotorsion dimension of A#;H in terms of the corresponding data for H and A. Let H be a finite-dimensional weak Hopf algebra over a field κ and A an associative algebra, and A#_σH a weak crossed product. In this paper, a spectral sequence for Ext is constructed which yields an estimate for cotorsion dimension of A#_σH in terms of the corresponding data for H and A.
出处 《Communications in Mathematical Research》 CSCD 2018年第2期133-140,共8页 数学研究通讯(英文版)
基金 The NSF(KJ2016A545,KJ2015B12,2017ZR08zd)of Anhui Province the key projectsoutstanding young talent support program(gxyq ZD2016353)of Anhui Province
关键词 weak crossed product cotorsion dimension projective resolution weak crossed product cotorsion dimension projective resolution
  • 相关文献

参考文献1

二级参考文献7

  • 1BOHM G, SZLACHANYI K. A coassociative C^*-quantum group with nonintegral dimensions [J]. Lett. Math. Phys., 1996, 38(4): 437-456.
  • 2NIKSHYCH D, VAINERMAN L. Finite Quantum Groupoid and Their Applications [M]. Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002.
  • 3BOHM G, NILL F, SZLA-CHANYI K. Weak Hopf algebras L Integral theory and C^*-structure [J]. J. Algebra, 1999, 221(2): 385-438.
  • 4STENSTROM B: Rings of Quotients [M]. Springer-Verlag, New York-Heidelberg, 1975.
  • 5HAPPEL D. On Gorenstein algebras [J]. Progr. Math., 1991, 95: 389-404.
  • 6CAENEPEEL S, DE GROOT E. Galois theory for weak Hopf algebras [J]. Rev. Roumaine Math. Pures Appl. to appear.
  • 7DOI Y. Hopf extensions of algebras and Maschke type theorems [J]. Israel J. Math., 1990, 72(1-2): 99-108.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部