期刊文献+

基于AKF和RLS的车辆簧载质量辨识研究 被引量:2

Study of Sprung Mass Estimation for Ground Vehicles Based on AKF and RLS
在线阅读 下载PDF
导出
摘要 实际应用中,车辆负载会随着乘客和货物的变化而发生显著改变。提出结合自适应卡尔曼滤波器(AKF)与递推最小二乘算法(RLS)进行车辆簧载质量的在线辨识。首先,采集四分之一车辆悬架的簧载振动加速度、动行程及车轮垂向加速度信号,对车辆悬架系统中的簧载质量和车轮的绝对速度进行估计,进而由遗忘因子递推最小二乘算法辨识车辆簧载质量。分析了在不同路面等级下,卡尔曼滤波器的过程噪声协方差和测量噪声协方差对悬架状态估计精度的影响。仿真结果显示,在选取与车辆行驶路面等级匹配的过程噪声协方差和测量噪声协方差时,车辆悬架状态参数的估计精度较高,并能够在线准确地辨识得到车辆的簧载质量值。 In practice,the sprung mass of ground vehicles varies significantly with changes in passengers and cargo.An online identification of vehicle sprung mass is proposed combining with adaptive Kalman filter(AKF)and recursive least square(RLS)under various road classifications.Firstly,the absolute speeds of sprung mass and wheel in the vehicle suspension system are estimated by collecting the vibration acceleration,moving stroke and wheel vertical acceleration signals of a quarter vehicle spung.Then,RLS with forgetting factors is used to identify the vehicle sprung mass.The influence of system process noise variance and measurement noise covariance of AKF on the estimation accuracy under different road conditions is analyzed.Simulation results show that this method can obtain a high accuary of state estimation of suspension system and provide a practical solution for real-time sprung mass estimation.
作者 王彦 赵丰 李万敏 WANG Yan;ZHAO Feng;LI Wan-min(School of Automotive Engineering,Lanzhou Institute of Technology,Lanzhou 730050,China;Beijing Institute of Aerospace Control Devices,Beijing 100094,China)
出处 《测控技术》 CSCD 2018年第3期89-93,97,共6页 Measurement & Control Technology
关键词 自适应卡尔曼滤波器(AKF) 递推最小二乘(RLS) 簧载质量 路面等级 adaptive Kalman filter recursive least squares sprung mass road classfication
  • 相关文献

参考文献4

二级参考文献27

  • 1王铁,张国忠,周淑文.带神经网络的防抱死制动系统(ABS)路面辨识[J].中国工程机械学报,2004,2(1):92-95. 被引量:2
  • 2刘珂,周富强,张广军.半径约束最小二乘圆拟合方法及其误差分析[J].光电子.激光,2006,17(5):604-607. 被引量:82
  • 3郑太雄,李锐,李银国,冯辉宗.载重汽车ABS路面辨识算法研究[J].中国机械工程,2007,18(3):374-377. 被引量:1
  • 4李锐,郑太雄,冯辉宗,李银国,陈伟民.基于模糊自适应的汽车ABS路面辨识技术[J].重庆邮电大学学报(自然科学版),2007,19(2):201-205. 被引量:7
  • 5Watson G A. Least squares fitting of circles and ellipses to measured data [ J ]. BIT Numerical Mathematics, 1999,39 ( 1 ) : 176 - 191.
  • 6Kasa I. A circle fitting procedure and its error analysis [ J ]. IEEE Transactions on Instrumentation and Measurement, 1976,25(3) :8 - 14.
  • 7Moura L, Kitney R. A direct method for least-squares circle fitting [ J ]. Computer Physics Communications, 1991,64 ( 1 ) : 57 - 63.
  • 8Chernov N, Lesort C. Least squares fitting of circles [ J ]. Journal of Mathematical Imaging and Vision, 2005,23 ( 3 ) : 239 - 252.
  • 9Ahn S J, Rauh W, Warnecke H J. Leastsquares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and pa- rabola[ J]. Pattern Recognition,2001,34(12) :2283 - 2303.
  • 10Kanatani K, Rangarajan P. Hyper least squares fitting of cir- cles and ellipses [ J ]. Computational Statistics and Data A- nalysis ,2011,55 (6) :2197 - 2208.

共引文献27

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部