期刊文献+

基于粒子群算法的冰蓄冷空调系统运行优化研究 被引量:10

Research on operation optimization of ice-storage air conditioning system based on particle swarm optimization
在线阅读 下载PDF
导出
摘要 冰蓄冷空调系统可以平衡电网压力,达到"移峰填谷"的作用,为了推广冰蓄冷空调的使用,提高系统的经济效益和节能效果具有重要意义.通过建立冰蓄冷空调系统的运行模型,表示出冰蓄冷空调系统的日运行费用和日运行能耗.通过TRNSYS软件对目标建筑的模拟得到目标建筑冷负荷.依据目标建筑冷负荷,设定系统制冷主机每小时的荷载率,建立冰蓄冷空调系统节能、经济运行的多目标函数模型,并使用粒子群算法对模型求解得到系统优化运行参数.通过实例分析:与现阶段的运行策略相比较,使用得到的优化运行参数指导系统运行可以为用户节约10.2%的运行费用,同时可以降低15.2%的电能损失. Ice-storage air-conditioning system can balance the grid pressure to achieve“peak load shifting”effect.In order to promote the use of ice storage air-conditioning,enhancing economic efficiency and energy-saving effect of the system is important.Through the establishment of ice storage air-conditioning system operation model daily running costs and daily energy consumption of ice-storage air-conditioning system can be obtained.By using TRNSYS simulation software on the target architecture,building cooling load can also be obtained.Based on the target building cooling load,setting the system chiller hourly load rate,establishing energy-saving and economical operation of the system of multi-objective model,and using the particle swarm algorithm to solve the model system,optimal operation parameters as thus acquired.An example:Compared with operation strategy at this stage,using the optimized operating parameters guide system operation can save 10.2%of the operating costs and reduce 15.2%of the energy losses.
作者 于军琪 王胤钧 陈旭 赵安军 严龙山 YU Junqi;WANG Yinjun;CHEN Xu;ZHAO Anjun;YAN Longshan(School of Information and Control Engineering,Xi′an Univ.of Arch.&Tech.,Xi′an 710055,China;Shaanxi Architectural Design and Research Institute Co.,Ltd.,Xi′an 710018,China)
出处 《西安建筑科技大学学报(自然科学版)》 CSCD 北大核心 2018年第1期148-154,共7页 Journal of Xi'an University of Architecture & Technology(Natural Science Edition)
基金 教育部留学回国人员科研启动基金(教外司留[2014]1685号);西安市碑林区2016年科技计划项目(GX1603)
关键词 冰蓄冷空调系统 运行费用 运行能耗 粒子群算法 优化参数 ice-storage air-conditioning system running costs energy consumption particle swarm optimization optimization parameters
  • 相关文献

参考文献5

二级参考文献33

  • 1王勇,赵庆珠.冰蓄冷系统的优化控制分析[J].暖通空调,1996,26(3):3-6. 被引量:37
  • 2戴辉阳,曹红奋,王敏.冰蓄冷空调系统的经济分析[J].能源与环境,2006(2):16-19. 被引量:4
  • 3严德隆,张维君.空调蓄冷应用技术[M].北京:中国建筑工业出版社,1995
  • 4住房和城乡建设部工程质量安全监管司,中国建筑标准设计研究院.全国民用建筑工程设计技术措施暖通空调·动力[M].北京:中国计划出版社,2009.
  • 5C A Coello Coello.A Comprehensive survey of evolutionary-based multiobjective optimization,techniques.Knowledge and Information Systems,1999,1(3):269~308
  • 6J D Schaffer.Multiple objective optimization with vector evaluated genetic algorithms.The First Int'l Conf on Genetic Algorithms,Lawrence Erlbaum,1985
  • 7D A V Veldhuizen,G B Lamont.Multiobjective evolutionary algorithm research:A history and analysis.Department of Electrical and Computer Engineering,Graduate School of Engineering,Air Force Institute of Technology,Tech Rep:TR-98-03,1998
  • 8R Eberhart,J Kennedy.A new optimizer using particle swarm theory.In:Proc of the 6th Int'l Symposium on Micro Machine and Human Science.Piscataway,NJ:IEEE Service Center,1995.39~43
  • 9J Kennedy,R Eberhart.Particle swarm optimization.IEEE Int'l Conf on Neural Networks,Perth,Australia,1995
  • 10K E Parsopoulos,M N Vrahatis.Particle swarm optimizer in noisy and continuously changing environments.In:M H Hamza ed.Artificial Intelligence and Soft Computing.Iasted:ACTA Press,2001.289~294

共引文献257

同被引文献94

引证文献10

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部