期刊文献+

面向Hadoop集群并行处理的复杂交通环境监控视频中运动目标检测方法

A Method of Detection of Moving Targets in Complex Traffic Surveillance Video on Hadoop Cluster Parallel Processing
在线阅读 下载PDF
导出
摘要 复杂交通环境视频中运动目标的自动检测是智能视频犯罪侦查系统的关键技术之一。本文提出了一种在Hadoop集群上对复杂交通环境视频中的运动目标进行检测的方法——OHMOFD方法,该方法是对帧差法进行改进,有效地克服了传统帧差法检测运动物体时容易出现孔洞的缺点并适合Hadoop集群并行处理。OHMOFD方法在Hadoop集群上实现了一层次并行运动目标检测。实验表明,车辆行人运动目标检测效果较好,检测效率也比运行在PC单机上的串行检测算法效率有明显提高。 Detection of the moving targets in complex traffic surveillance video is a key technology for smart video criminal investigation system.This paper proposes a method OHMOFD for detecting moving objects in complex traffic surveillance video on Hadoop cluster.This method improved the frame difference method.It effectively overcomes the shortcomings of existing holes in a moving target by using the traditional frame difference method.It also adapts to implementation on Hadoop cluster for parallel processing.OHMOFD mechod has been implemented on Hadoop cluster with one layer parallel moving target detections.The experiments show that the result of detection of vehicles and pedestrian is good and the dection efficiency is better than that on a PC.
作者 李振 冯乔生 LI Zhen;FENG Qiao-sheng(School of Information Science and Technology, Yunnan Normal University,Kunming 650000)
出处 《软件》 2017年第11期147-155,共9页 Software
关键词 监控视频处理 运动目标检测 HADOOP集群 改进的帧差算法OHMOFD Surveillance video processing Moving target detection Hadoop cluster Improved frame difference algorithm OHMOFD
  • 相关文献

参考文献1

二级参考文献46

  • 1Stephen J. McKenna,Sumer Jabri,Zoran Duric,Azriel Rosenfeld,Harry Wechsler.Tracking Groups of People[J]. Computer Vision and Image Understanding . 2000 (1)
  • 2Pedro F. Felzenszwalb,Daniel P. Huttenlocher.Pictorial Structures for Object Recognition[J]. International Journal of Computer Vision . 2005 (1)
  • 3Zoran Zivkovic,Ferdinand van der Heijden.??Efficient adaptive density estimation per image pixel for the task of background subtraction(J)Pattern Recognition Letters . 2005 (7)
  • 4Stauffer C,Grimson WEL.Learning Patterns of Activity Using Real-Time Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2000
  • 5Felzenszwalb P.F,McAllester D,Ramanan D.A discriminatively trained,multiscale,deformable part model. Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition . 2008
  • 6Barnich O,Droogenbroeck M V.Vibe:A powerful random technique to estimate the background in video sequences. Proceedings of 2009 IEEE International Conference on Acoustics,Speech and Signal Processing . 2009
  • 7Girshick R,Donahue J,Darrell T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition CVPR . 2014
  • 8李琳怡,张海,韩颖婕.??改进的混合高斯法在运动目标检测中的应用(A)第十四届全国图象图形学学术会议论文集(C)2008
  • 9Yali Amit,Alain Trouvé.??POP: Patchwork of Parts Models for Object Recognition(J)International Journal of Computer Vision . 2007 (2)
  • 10N. J. B. McFarlane,C. P. Schofield.??Segmentation and tracking of piglets in images(J)Machine Vision and Applications . 1995 (3)

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部