期刊文献+

非负矩阵分解的非单调自适应BB步长算法 被引量:1

Non- monotone adaptive Barzilai- Borwein step- size method for nonnegative matrix factorization
在线阅读 下载PDF
导出
摘要 基于交替非负最小二乘算法的框架,提出一种非负矩阵分解的非单调自适应BB(Barzilai-Borwein)步长算法。虽然该算法的步长不是由线搜索取得的,但是满足非单调线搜索,从而保证了算法的全局收敛性。同时该算法使用自适应BB步长和梯度的Lipschitz常数来提高算法的收敛速度。最后在理论上证明了该算法是收敛的,同时数值试验和人脸识别的试验结果表明该算法是有效的且优于其他算法。 Based on the Alternating Nonnegative Least Squares(ANLS) framework, an algorithm called Non-monotone Adaptive Barzilai-Borwein step-size (NABB) algorithm for nonnegative matrix factorization is proposed. The step-size of the algorithm satisfies the non-monotone line search though it is not obtained through line search, which ensures the global convergence of the algorithm. Furthermore, adaptive BB step-size and the gradient of the Lipschitz constant are also used to accelerate the rate of the convergence in this algorithm as usual. Finally, the algorithm is theoretically proved to be convergent. At the same time, the test results of numerical experiments and face recognition show that the proposed algorithm is effective and outruns other algorithms.
作者 王静 杨善学 WANG Jing;YANG Shanxue(School of Mathematics and Statistics, Xidian University, Xi’an 710126, China;School of Statistics, Xi’an University of Finance and Economics, Xi’an 710100,China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第5期181-186,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61179040)
关键词 非单调线搜索 自适应BB步长 非负矩阵分解 non-monotone line search adaptive Barzilai-Borweinstep-size nonnegative matrix factorization
  • 相关文献

参考文献2

二级参考文献35

  • 1申丽岩,方滨,沈毅.基于负熵极大的独立分量分析方法[J].中北大学学报(自然科学版),2005,26(6):396-399. 被引量:14
  • 2Saito N,Larson B M,Benichou B.Sparsity vs Statistical Independence from a Best-basis Viewpoint[C] //Proc SPIE Wavelet Applications in Signal and Image Processing Ⅷ.USA:SPIE,2000(4119):474-486.
  • 3Lee D D,Seung H S.Learning the Parts of Objects by Non-negative Matrix Factorization[J].Nature,1999(401):788-791.
  • 4Cichocki A,Zdunek R.Multilayer Nonnegative Matrix Factorization Using Projected Gradient Approaches[J].International Journal of Neural Systems,2007,7(6):431-446.
  • 5Cichocki A,Zdunek R.Multilayer Nonnegative Matrix Factorization[J].Electronics Letters,2006,42(16):947-948.
  • 6Cichocki A,Zdunek R.Regularized Alternating Least Squares Algorithms for Non-negative Matrix/tensor Factorizations[C] //Lecture Notes In Computer Science.Berlin:Springer,2007(4493):793-802.
  • 7Zdunek R,Cichocki A.Nonnegative Matrix Factorization with Constrained Second-order Optimization[J].Signal Processing,2007(87):1904-1916.
  • 8Zdunek R,Cichocki A.Non-negative Matrix Factorization with Quasi-Newton Optimization[C] //The Eighth International Conference on Artificial Intelligence and Soft Computing (ICAISC).Berlin:Springer,2006:870-879.
  • 9Donoho D L.Compressed Sensing[J].IEEE Trans on Inform Theory,2006(52):1289-1306.
  • 10Loris I.On the Performance of Algorithms for the Minimization of L1-penalized Functionals[J].Inverse Problems,2009,25(3):035008.

共引文献16

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部