期刊文献+

网络不稳定节点的动态特征挖掘模型 被引量:1

Model for dynamic feature mining of network unstable nodes
在线阅读 下载PDF
导出
摘要 为了提高对网络不稳定节点定位和检测精度,提出基于经验模态分解和功率谱密度特征提取的网络不稳定节点的动态特征挖掘模型。首先对网络不稳定节点输出信号进行经验模态分解,将一个复杂的网络不稳定节点的动态信号分解成若干个IMF分量之和,对分解信号进行功率谱密度特征提取,实现对网络不稳定节点的动态特征挖掘。仿真结果表明,该挖掘模型能准确实现对不稳定节点输出信号的参量估计和动态特征提取,特征挖掘精度较高,较好地实现了对不稳定节点的定位识别。 In order to improve the location and detection accuracy of the network unstable nodes,a network unstable nodes′ dynamic feature mining model based on empirical mode decomposition and power spectral density feature extraction is proposed. The empirical mode decomposition is performed for output signals of the network unstable nodes to decompose the dynamic signal of a complex network unstable node into the sum of several IMF components. The power spectral density feature ofthe decomposed signal is extracted to mine the dynamic features of the network unstable nodes. The simulation results show that the mining model can accurately realize the output signal parameter estimation and dynamic feature extraction of the unstable nodes,has high feature mining accuracy,and can locate and recognize the unstable nodes better.
作者 刘菲 LIU Fei(Modern Educational Technology Center,The National Police University for Criminal Justice,Baoding 071000,C)
出处 《现代电子技术》 北大核心 2017年第3期19-22,共4页 Modern Electronics Technique
关键词 网络不稳定节点 输出信号 动态特征挖掘 经验模态分解 network unstable node output signal dynamic feature mining empirical mode decomposition
  • 相关文献

参考文献4

二级参考文献135

  • 1郑晋军,曹志刚.低轨卫星辅助的干扰源位置确定[J].系统工程与电子技术,2005,27(12):2002-2005. 被引量:4
  • 2孙正波,叶尚福.一种时差/频率差快速联合估计方法[J].电波科学学报,2006,21(5):641-646. 被引量:12
  • 3马翠芹,李韬,张纪峰.离散时间大种群随机多智能体系统的线性二次分散动态博弈[J].系统科学与数学,2007,27(3):464-480. 被引量:3
  • 4丁丽萍,周博文,王永吉.基于安全操作系统的电子证据获取与存储[J].软件学报,2007,18(7):1715-1729. 被引量:8
  • 5Smith W. W. , Steffes P. G. A satellite interference loca- tion system using differential time and phase techniques [ J ]. IEEE Aerospace and Electronics Systems Magazine,1991,6(3) :3-7.
  • 6Weiss L. G. Wavelets and Wideband Correlation Process- ing [ J ]. IEEE Signal Processing Magazine 1994,11 (1) : 13-32.
  • 7Ulman R. , Geraniotis E. Wideband TDOA-FDOA Process- ing using summation of short time CAFs[ J]. IEEE Trans- actions on Signal Processing. 1999,47 (12) :3193 - 3200.
  • 8Stein S. Algorithms for ambiguity function processing[ J ]. IEEE Transactions on Acoustics, Speech and Signal Pro- cessing, 1981,29 ( 3 ) : 588-599.
  • 9Kim B Y, Ahn H S. Distributed coordination and control for a freeway traffic network using consensus algorithms Q2[J]. IEEE System J, 2014, 99(1): 1-7.
  • 10Kar S, Moura J. Distributed consensus algorithms in sensor networks with imperfect communication: Link failures and channel noise[J]. IEEE Trans on Signal Process, 2009, 57(1): 355-369.

共引文献108

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部