期刊文献+

基于视频监控的人脸检测跟踪识别系统研究 被引量:19

Research on face detection, tracking and recognition system based on video surveillance
在线阅读 下载PDF
导出
摘要 设计了一种基于视频监控的人脸检测跟踪识别系统,该系统的功能是检测并实时跟踪视频中的人脸图像,同时进行身份识别。针对Gentle Ada Boost算法构造的级联分类器检测效率偏低的问题,提出了一种递进复杂度的级联分类器。针对传统粒子滤波器最高权重粒子不准确的问题,提出了均值权重粒子滤波器。针对传统粒子滤波器样本衰退的问题,提出了一种同时结合人脸检测和人脸跟踪算法的跟踪校正策略。对于检测和跟踪到的人脸,利用基于Gabor变换和HMM的方法进行身份识别。实验结果表明,系统能够准确地检测并实时跟踪视频中的人脸,可以实现人脸的快速识别,是一种能够应用到视频监控系统中的有效方法。 Based on video surveillance, this paper designs a kind of face detection, tracking recognition system, the function of which is detecting and tracking face image real-timely in video, at the same time for recognizing for the identity. The cascade classifier that Gentle AdaBoost algorithm constructs has a problem of low efficiency. To deal with that it proposes a cascade classifier in progressive complexity. In view of the highest weight particles of the traditional particle filter may not be accurate, the weight equal value of particle filter is proposed. Aiming at the sample recession problem of traditional particle filter, it puts forward a strategy of tracking correction that combines face detection and face tracking algorithm.The method based on Gabor transform and the HMM is used to identify the faces which are detected and tracked. The experiment results show that in the video, the system is capable of detecting the faces accurately and tracking them real-timely,it can also realize the fast recognition. It is an effective method that can be applied to the video surveillance system.
作者 胡一帆 胡友彬 李骞 耿冬冬 HU Yifan;HU Youbin;LI Qian;GENG Dongdong(College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第21期1-7,35,共8页 Computer Engineering and Applications
基金 国家自然科学基金青年科学基金项目(No.41305138)
关键词 递进结构 均值权重 跟踪校正 GABOR特征 隐马尔可夫模型(HMM) progressive structure weight equal value tracking correction Gabor feature Hidden Markov Model(HMM)
  • 相关文献

参考文献5

二级参考文献94

  • 1周国民,陈勇,李国军.人脸识别中应用小波变换的两个关键问题[J].浙江大学学报(理学版),2005,32(1):34-38. 被引量:27
  • 2叶剑波,夏利民.基于卡尔曼粒子滤波器的人眼跟踪[J].计算机工程,2006,32(3):196-198. 被引量:5
  • 3Gunnarsson F, Bergman N. Particle filters for positioning, navigation, and t racking [ J ] . IEEE Transactions on Signal Processing, 2002 ,50(2) :425-457.
  • 4Gordon N J , Salmond D J , Smith A F M. Novel approach to nonlinear/ non-Gussian Bayesian state estimation [J].IEE Proceedings F. Radar Signal & Process, 1993, 140 (2) :107-113.
  • 5Doucet A. On sequential simulation monte carlo sampling methods for bayesian filtering [ J ]. Statistics and Computing, 2000, 10 (3) : 197-208.
  • 6Chen Hui-min. Joint target recognition and tracking using class specific features [ A ]. In: Proceedings of Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers[ C], Pacific Grove, CA, USA, 2004: 2101-2105.
  • 7Avidan Shai. Ensemble tracking [ A ]. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition [ C], San Diego, CA, USA,2005:494-501.
  • 8Collins T R, Liu Y. On-line selection of discriminative tracking features[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(10) : 1631-1643.
  • 9Stern H, Efros H. Adaptive Color Space Switching for Face Tracking in Multi-Colored Lighting Environments[ A]. In: Proceedings of 7th IEEE International Conference on Automatic Face Gesture Recognition[ C], Washington DC, USA, 2002:249-254.
  • 10Avidan, Shai. Support vector tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 ( 8 ) : 1064-1072.

共引文献139

同被引文献169

引证文献19

二级引证文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部