期刊文献+

一种改进的生物地理学优化算法 被引量:9

Improved biogeography-based optimization algorithm
在线阅读 下载PDF
导出
摘要 生物地理学优化算法(BBO)作为一种新型的智能算法,在其提出不到十年的时间内受到学界的广泛关注和研究,并显示出了广阔的应用前景。为了提高算法的优化性能,对BBO算法提出一种改进,该算法在将差分优化算法(DE)中的局部搜索策略同BBO算法中的迁移策略相结合的基础上,针对迁移算子和变异算子分别进行改进,提出了二重迁移算子和二重变异算子,使得栖息地个体在进化过程中得到更高的进化概率,从而使得算法的寻优能力得到进一步提升。通过6个高维函数的测试,结果表明该算法在优化高维优化问题时,较其他几种生物地理学优化算法具有更好的收敛性和稳定性。 The Biogeography-Based Optimization algorithm(BBO)is a new intelligent algorithm. It has received wide concern and study by the academic community within the ten years since it was proposed, and shows a broad application prospect. In order to improve the performance of the algorithm, the paper proposes an improved BBO algorithm. The improved algorithm based on the combination of the local search strategy in Differential Evolution(DE)algorithm and the migration strategy in BBO algorithm, which raises a kind of double migration operator and double mutation operator,aims to make the operators work better. These improvements make the habitats get a higher evolutionary probability in the process of evolution and the algorithm’s optimization ability get further improvement. Through the test of 6 high dimension basic functions, the result shows that the improved algorithm proposed in this paper has better convergence and stability compared with other optimization algorithm referred in the optimization of high dimensional optimization problem.
作者 鲁宇明 王彦超 刘嘉瑞 Wu Liu LU Yuming;WANG Yanchao;LIU Jiarui(Key Laboratory of Image Processing and Pattern Recognition in Jiangxi Province, Nanchang 330063, China;College of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China;School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710072, China;Department of Radiology Therapeutics, Yale University, Connecticut, Newhaven 06511, United States)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第17期146-151,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61262019) 江西省自然科学基金(No.20151BAB207065) 江西省图像处理与模式识别重点实验室开放基金(第三批) 2014国家留学基金委国外访学项目 2014年江西省普通本科高校中青年教师发展计划访问学者项目
关键词 生物地理学优化算法 局部搜索策略 二重迁移算子 二重变异算子 biogeography-based optimization algorithm local search strategy double migration operator double mutation operator
  • 相关文献

参考文献17

  • 1Simon D.Biogeography-based optimization[J].IEEE Transactionson Evolutionary Computation,2008,12(6):702-713.
  • 2Simon D,Ergezer M,Du Dawei,et al.Markov models forbiogeography-based optimization[J].IEEE Transactions onSystems,Man and Cybernetics,Part B:Cybernetics,2011,41(1):299-306.
  • 3Simon D,Ergezer M,Du Dawei.Markov analysis ofbiogeography-based optimization[EB/OL].[2015-03-11].http://academic.csuohio.edu/simond/bbo/markov.
  • 4Simon D,Ergezer M,Du Dawei.Markov models forbiogeography-based optimization and genetic algorithmswith global uniform recombination[EB/OL].[2015-03-11].http://academic.csuohio.edu/simond/bbo/markov/MarkovJournal.pdf.
  • 5Simon D,Rarick R,Ergezer M,et al.Analytical and numericalcomparisons of biogeography-based optimization andgenetic algorithms[J].Information Sciences,2011,181(7):1224-1248.
  • 6Simon D.A probabilistic analysis of a simplifiedbiogeography-based optimization algorithm[J].EvolutionaryComputation,2011,19(2):167-188.
  • 7Du Dawei,Simon D,Ergezer M.Biogeography-based optimizationcombined with evolutionary strategy and immigration refusal[C].IEEE Conference on Systems,Man and Cybernetics.San Antonio,TX:[s.n.],2009:1023-1028.
  • 8Gong Wenyin,Cai Zhihua,Ling C X.A hybrid differentialevolution with biogeography-based optimization forglobal numerical optimization[J].Soft Computer,2009,4(15):645-665.
  • 9王芙丽,李平,曹江涛.改进的基于局部搜索策略的生物地理学优化算法[J].江南大学学报(自然科学版),2012,11(4):467-473. 被引量:8
  • 10Mo Hongwei,Xu Lifang.Biogeography migration algorithmfor traveling salesman problem[J].InternationalJournal of Intelligent Computing and Cybernetics,2011,4(3):311-330.

二级参考文献55

共引文献71

同被引文献54

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部