期刊文献+

极小化不可行量函数的Flow Shop变异问题

Variants of the Flow Shop Scheduling Problem to Minimize the Function of Infeasibilities
在线阅读 下载PDF
导出
摘要 讨论一类Flowshop的变异问题。在这类变异问题中 ,给定一个截止工期 ,该工期比Flowshop最优调度中的最大完工时间小。讨论的问题是在全部工件的完工时间不超过截止工期的限制下 ,极小化不可行量函数。这类问题与矩阵函数因子分解有着密切联系。基于对问题的分析 ,证明了这一问题等价于单机调度中极小化类似的延迟量函数。推广了已有的结论。 A class of variants of the Flow shop scheduling problem are studied. In these variants a deadline which is less than the optimal makespan is given, and the task is to find a schedule that meets this deadline, thereby minimizing the function of infeasibilities. The problems are closelurelated with factorization problems for rational matrix functions. Through the analysis of the problem, it is proved that the problem is equivalent to a single-machine scheduling for minimizing an analogous function of delay. Some conclusions are generalized.\;
出处 《系统工程与电子技术》 EI CSCD 北大核心 2002年第9期90-93,共4页 Systems Engineering and Electronics
基金 辽宁省科委自然科研基金资助课题 (9910 70 0 1) 辽宁省教育厅科研基金资助课题 (2 0 2 62 2 5 0 99112 15 5 8)
关键词 极小化不可行量函数 变异问题 调度问题 FLOW SHOP Scheduling problem Flow shop Single machine
  • 相关文献

参考文献4

  • 1Bart H, Kroon L G. Variants of the Two Machine Flow Shop Problem Connected with Factorization of Matrix Functions[J]. European. J. Oper. Res., 1996, 91(1): 144-159.
  • 2Lushchakova I N. Minimizing Functions of Infeasibilities in a Two Machine Flow Shop[J]. European. J. Oper. Res., 2000, 121(2):380-393.
  • 3Du J, Leung J Y T. Minimizing Total Tardiness on One Machine is NP-Hard[J]. Math. Oper. Res., 1990, 15(3): 483-495.
  • 4Fields M C, Frederickson G N. A Faster Algorithm for the Maximum Weighted Tardiness Problem[J]. Information Processing Letters, 1990, 36(1): 39-44.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部