摘要
本文讨论了2n阶微分方程u^(2n)(t)=f(t,u(t),u′(t),…,u(2n-1)(t)),t∈R奇2π-周期解的存在性,其中n是正整数,f:R×R^(2n)→R连续且关于t是以2π为周期的奇函数.运用Leray-Schauder不动点定理与Fourier分析的方法,本文在允许非线性项f超线性增长的条件下获得了该方程的奇2π-周期解.
In this paper,we discuss the existence of odd 2π-periodic solutions for the nonlinear 2 n -order di erential equation u^ (2n) (t)=f(t,u(t),u'(t),…,u^(2n-1) (t)),t∈ R,where n is a positive integer, f: R × R^2n → R is continuous odd function and 2π- periodic with respect to t. By applying the Leray-Schauder xed point theorem and Fourier analysis method,the existence of odd 2π- periodic solutions is obtained under the condition that nonlinear term f satis es unilateral growth.
作者
文乾
李永祥
WEN Qian,LI Yong-Xiang(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第6期1167-1170,共4页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(11661071)