摘要
本文中提出了一种适用于电动车辆的以转矩为控制目标的弱磁控制策略,通过离线计算获得电机最大转矩特性曲线和策略切换转矩特性曲线,并以此为基础在电机d-q轴坐标系下根据反馈转速和目标转矩不断更新电机弱磁工作点,使其在以最大转矩电流比曲线、电流极限圆和最大转矩电压比曲线为边界的区域内移动,从而在复杂的运行工况下提高了电机转矩响应速度和运行效率。通过Matlab/Simulink仿真验证了整个控制策略的可行性和性能优势。
In this paper, a field-weakening control strategy for electric vehicles is proposed with torque control as objective. The characteristic curves of the peak torque and switching torque of motor are obtained by off-line calculation. On this basis and based on feedbaek speed and target torque, the field-weakened working points in d-q coordinates of motor are constantly updated and move within the region with the curve of the ratio of peak torque over current, current limit circle and the curve of the ratio of peak torque over voltage as boundaries. As a result, the torque response speed and operating efficiency of motor under complex working conditions are enhanced. Simulation with Matlab/Simulink verifies the feasibility of the control strategy proposed and the improvement of vehicle performanee.
作者
林程
邢济垒
黄卓然
程兴群
Lin Cheng;Xing Jilei;Huang Zhuoran;Cheng Xingqun(School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081)
出处
《汽车工程》
EI
CSCD
北大核心
2018年第11期1346-1353,1363,共9页
Automotive Engineering
基金
国家自然科学基金(51575044)资助