期刊文献+

基于人工神经网络的比水容量模型参数预测模型研究 被引量:1

Research on the Model Parameter Forecasting of Specific Water Capacity Based on Artificial Neural Networks
在线阅读 下载PDF
导出
摘要 为了探索获取比水容量的简便方式,以山西省黄土高原区农耕土壤为实验对象,进行了土壤水分特征曲线与比水容量的相关试验,拟合得到比水容量模型参数,并配套测定了相关的土壤基本理化参数。在研究分析各个土壤基本理化参数与比水容量模型参数的影响关系的基础上,建立了关于土壤质地、土壤容重、土壤有机质含量、土壤无机盐含量的BP神经网络预报模型。研究表明:以土壤质地、土壤容重、土壤有机质含量、土壤无机盐含量为输入因子的BP神经网络预报模型是可行的,比水容量模型参数实测值与预测值之间的平均相对误差均低于10%,预测效果较好,精度较高。该研究结果为黄土高原地区获取比水容量提供了理论与技术上的支持,同时可促进土壤传输函数理论的发展。 In order to explore a simple and convenient method for obtaining specific water capacity,the relevant basic physical and chemical parameters of the soil,the soil water characteristic curve and specific water capacity are tested in the soil of the Loess Plateau in Shanxi Province. The parameters of the specific water capacity model are fitted and measured. Based on an analysis of the relationship between the basic physical and chemical parameters of each soil and the parameters of the water capacity model,a BP neural network prediction model is established on the soil texture,soil bulk density,soil organic matter content,and soil inorganic salt content. The results show that the BP neural network prediction model based on soil texture,soil bulk density,soil organic matter content and soil inorganic salt content are feasible,and the average relative error between the measured and predicted values of the water capacity model parameters is lower than 10%,prediction and accuracy are better. The research results provide theoretical and technical supports for obtaining specific water capacity,and promoting the development of soil transfer function theory.
作者 李浩然 樊贵盛 LI Hao-ran;FAN Gui-sheng(College of Hydroscience and Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
出处 《中国农村水利水电》 北大核心 2018年第10期197-201,210,共6页 China Rural Water and Hydropower
基金 国家自然科学基金资助项目(40671081)
关键词 人工神经网络 比水容量模型参数 Gardner经验模型 土壤基本理化参数 artificial neural networks parameters of the water capacity model Gardner model physical and chemical parameters of soil
  • 相关文献

参考文献6

二级参考文献45

共引文献103

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部