期刊文献+

Facile synthesis of graphene-supported Ni-CeOx nano-composites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane 被引量:14

Facile synthesis of graphene-supported Ni-CeOx nano-composites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane
原文传递
导出
摘要 Development of low-cost and high-performance catalysts for hydrogen generation via hydrolysis of ammonia borane (NH3BH3, AB) is a highly desirable pathway for future hydrogen utilization. In this work, Ni nanocatalysts doped with CeOx and supported on graphene (Ni-CeOdgraphene) were synthesized via a facile chemical reduction route and applied as robust catalysts for the hydrolysis of AB in aqueous solution at room temperature. The as-synthesized Ni-CeOdgraphene nanocomposites (NCs) exhibited excellent catalytic activity with a turnover frequency (TOF) as high as 68.2 min-1, which is 49-fold higher than that for a simple Ni nanoparticle catalyst and is among the highest values reported for non-noble metal catalysts in AB hydrolysis. The development of efficient and low-cost Ni-CeOdgraphene catalysts enhances the feasibility of using ammonia borane as a chemical hydrogen storage material, which may find application in a hydrogen fuel-cell based economy. Development of low-cost and high-performance catalysts for hydrogen generation via hydrolysis of ammonia borane (NH3BH3, AB) is a highly desirable pathway for future hydrogen utilization. In this work, Ni nanocatalysts doped with CeOx and supported on graphene (Ni-CeOdgraphene) were synthesized via a facile chemical reduction route and applied as robust catalysts for the hydrolysis of AB in aqueous solution at room temperature. The as-synthesized Ni-CeOdgraphene nanocomposites (NCs) exhibited excellent catalytic activity with a turnover frequency (TOF) as high as 68.2 min-1, which is 49-fold higher than that for a simple Ni nanoparticle catalyst and is among the highest values reported for non-noble metal catalysts in AB hydrolysis. The development of efficient and low-cost Ni-CeOdgraphene catalysts enhances the feasibility of using ammonia borane as a chemical hydrogen storage material, which may find application in a hydrogen fuel-cell based economy.
出处 《Nano Research》 SCIE EI CAS CSCD 2018年第8期4412-4422,共11页 纳米研究(英文版)
关键词 hydrogen generation ammonia borane CATALYSIS GRAPHENE nickel hydrogen generation ammonia borane catalysis graphene nickel
  • 相关文献

同被引文献84

引证文献14

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部