摘要
为了降低连锁超市的配送系统总成本,结合各超市配送的时效性,本文研究了一种带工作时间与软时间窗的车辆路径问题,建立了相应的双目标数学模型,并设计了一个自适应禁忌搜索算法进行求解.在算法中设计了性能提升策略,采用"随机禁忌长度"和"禁忌表重新初始化"来对邻域进行充分搜索,设计"多邻域结构体"和"自适应机制"来增强算法的全局寻优能力.经带时间窗车辆路径问题(VRPTW)基准算例测试,表明了算法的有效性.
To reduce the distribution system cost of chain supermarkets and facilitate the timeliness of supermarket distribution, in this paper, we propose a vehicle routing problem (VRP) with soft time windows and working time, and design a corresponding dual-objective mathematical model and an adaptive tabu search algorithm to solve the problem, We also embed some strategies to improve the performance of the optimization algorithm. First, we adopt a "random tabu length" and "tabu list re-initialization" to fully search the neighborhood. Next, we use a "multi-neighborhood structure" and " adaptive mechanism" to enhance the global optimization ability of the algorithm. Then, we apply benchmark examples of the VRP with time windows to test the new algorithm and verify its effectiveness.
作者
夏扬坤
符卓
XIA Yangkun;FU Zhuo(School of Traffic and Transportation Engineering,Central South University,Changsha 410075,China)
出处
《信息与控制》
CSCD
北大核心
2018年第5期599-605,共7页
Information and Control
基金
国家自然科学基金资助项目(71271220)
中国物流学会课题资助项目(2016CSLKT3-077)
中南大学中央高校基本科研业务费专项资金资助项目(2017zzts198)
关键词
车辆路径问题
自适应禁忌搜索
软时间窗
工作时间
连锁超市
vehicle routing problemadaptive tabu search
soft time windows
working time
chain-supermarkets