期刊文献+

智能手机多传感器融合的实时定位算法 被引量:2

Real Time Localization Algorithm for Multi-Sensor Fusion of Smart Phone
在线阅读 下载PDF
导出
摘要 对于纯视觉或惯导定位,由于运动的随意性和以及单传感器局限性,往往定位精度不理想。随着智能手机性能的提升,通常会配置多种传感器,因此在分析各传感器的基础上,提出基于智能手机多传感器融合的定位方式。基于An-droid智能手机的视觉和惯性传感器采集原始的图像数据、加速度和角速度数据,通过松耦合初始化进行融合,并采用非线性优化的方式推算出瞬时精确位置和姿态。实验结果表明,该方法能够在弱GPS场景获得精确的定位结果。 For pure vision or inertial navigation, due to the randomness of motion and the limitation of single sensor, the location effect is usually diffi- cult to meet the requirement. Therefore, based on the analysis of the two sensors, proposes a positioning method based on multi-sensor fu- sion of smart phones. The original image data, acceleration and angular velocity data are collected by the visual and inertial sensors of the Android smart phone, which are fused by loosely coupled initialization, and the instantaneous precise position and attitude are calculated by nonlinear optimization. Experimental results show that the proposed method can get accurate location results in GPS-denied scenes.
作者 崔思柱 刘丰豪 程石 肖倩 CUI Si-zhu;LIU Feng-hao;CHENG Shi;XIAO Qian(School of Construction Machinery,Chang'an University,Xi'an 710064)
出处 《现代计算机》 2018年第17期37-40,共4页 Modern Computer
关键词 传感器 融合 松耦合 非线性优化 Sensor Fusion Loose Coupling Nonlinear Optimization
  • 相关文献

参考文献3

二级参考文献17

  • 1SCHMID C, MOHR R, BAUCKHAGE C. Evaluation of interest point detectors [J]. Int J Comput Vision, 2000, 37(2): 151-172.
  • 2LOWED G. Distinctive image features from seale-invariant keypoints [J]. Int J Comput Vision, 2004, 60(2) : 91-110.
  • 3MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors [J[. IEEE Trans Pattern Anal Maeh Intell, 2005, 27(10): 1615-1630.
  • 4BASTANI.AR Y, TEMIZEL A, YARDIMCI Y. Improved SIFT matching for image pairs with scale difference [J]. Electron Lett, 2010, 46(5): 346-348.
  • 5YAN K, SUKTHANKAR R. PCA-SIFT: a more distinctive representation for local image descriptors [-C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattren Recognition. Wash- ington, DC, USA: IEEE, 2004, 2: 506-513.
  • 6DELPONTE E, ISGRO F, ODONE F, et al. SVD-matching using SIFT features [J]. Graph Models, 2006, 68(5/6) : 415-431.
  • 7BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features [J]. Comput Vision Im Un- derstanding, 2008, 110(3): 346-359.
  • 8苏宇,郭宝龙.一种基于曲率尺度空间的图像拼接算法[J].计算机工程与应用,2008,44(1):39-41. 被引量:5
  • 9姜国权,何晓兰,杜尚丰,柯杏.机器视觉在农业机器人自主导航系统中的研究进展[J].农机化研究,2008,30(3):9-11. 被引量:6
  • 10周爱军,杜宇人.基于视频图像Harris角点检测的车型识别[J].扬州大学学报(自然科学版),2008,11(1):67-70. 被引量:9

共引文献48

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部