期刊文献+

科学大数据――国家大数据战略的基石 被引量:59

Scientific Big Data——A Footstone of National Strategy for Big Data
原文传递
导出
摘要 作为人类的新型战略资源,大数据已成为知识经济时代的战略高地。其少量依赖因果关系、主要依靠数据相关性发现知识的新模式,使得其成为继经验、理论和计算模式之后的数据密集型科学范式的典型代表,带来了科研方法论的变革,正成为科学发现的新引擎。科学大数据作为大数据的重要分支,具有不可重复性、高度不确定性、高维性及计算分析高度复杂性的内部特征,以及在数据内容、数据体量、数据获取、数据分析等方面的外部特征,这给科学大数据的处理技术与方法提出了新的挑战。在以上分析基础上,文章提出了科学认知科学大数据,建设科学大数据基础设施,建立科学数据研究中心,以及构建科学大数据学术平台等建议。 Big data occupies the strategic high ground in the era of knowledge economies and also constitutes a new national and global strategic resource. It is a new pattern for scientific discovery with less dependence on causality and heavy dependence on data correlation. It has become a data-intensive scientific paradigm, following previous paradigms of empirical, theoretical and computational science. The paradigm has shifted the methodology of scientific research from theories and models based on causal analysis to comprehensive mechanistic scientific discovery including correlation analysis. As a branch of big data, scientific big data includes internal characteristics such as non-repeatability, high uncertainty, high dimensionality, and computational complexity. External characteristics include data type, data volume, data acquisition, and data analysis. All these characteristics bring new challenges for the techniques and methods of processing scientific big data. On the basis of the above analysis, we raise four recommendations: scientific cognition of scientific big data, construction of scientific big data infrastructure, establishment of a scientific data research center, and the structuring of a scientific big data academic platform.
作者 郭华东 GUO Huadong(Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100094,China)
出处 《中国科学院院刊》 CSCD 北大核心 2018年第8期768-773,共6页 Bulletin of Chinese Academy of Sciences
基金 中国科学院战略性先导科技专项(A类)(XDA19030000)
关键词 大数据 科学大数据 数据驱动 数据密集型科学 big data scientific big data big earth data data-intensive science
  • 相关文献

参考文献6

二级参考文献25

  • 1Turner V, Gantz J F, Reinsel D et al. The digital universe of oppor- ttmities: rich data and the increasing value of the internet of things, Framingham: IDC Analyze the Future, 2014.
  • 2Gantz J, Reinsel D. The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far east. Framingham: IDC Analyze the Future, 2012.
  • 3Special issue: Big data. Nature, 2008, 455(7209) : 1-136.
  • 4Jonathan T O, Gerald A M, Sandrine Bony et al. Special online collection: dealing with data. Science, 2011, 331 (6018 ) : 639-806.
  • 5Kennedy M C, O' Hagan A. Bayesian calibration of computer models. Journal of the Royal Statistical Society, Series B(Statisti cal methodology), 2001, 63 (3) :425-464. DOI:10.1111/1467- 9868.00294.
  • 6CODATA. Big data for international scientific programmes: Chal- lenges and opportunities A statement of recommendations and ac- tions. Beijing: Committee on data for science and technology, 2014.
  • 7Hey T, Tansley S, Tolle K. The fourth paradigm: Data-intensive scientific discovery. Redmond, Washington: Microsoft Research, 2009, ISBN:978-0982544204.
  • 8李国杰,程学旗.大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J].中国科学院院刊,2012,27(6):647-657. 被引量:1619
  • 9孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,50(1):146-169. 被引量:2406
  • 10冯芷艳,郭迅华,曾大军,陈煜波,陈国青.大数据背景下商务管理研究若干前沿课题[J].管理科学学报,2013,16(1):1-9. 被引量:519

共引文献696

同被引文献908

引证文献59

二级引证文献523

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部