期刊文献+

基于灰度共生矩阵的图像自适应分块压缩感知方法 被引量:9

GLCM-based Adaptive Block Compressed Sensing Method for Image
在线阅读 下载PDF
导出
摘要 分块压缩感知的提出很好地弥补了大尺寸图像占用资源多、重构耗时长等不足,但重构后的图像存在明显的块效应。针对现有图像纹理复杂度分析不够准确,导致自适应采样率分配后块效应降低不理想的问题,提出了一种基于灰度共生矩阵的图像自适应分块压缩感知方法。该方法通过共生矩阵分析图像的纹理特性,自适应分配采样率,在总采样率不变的前提下使纹理复杂度高的子块获得较高的采样率,纹理复杂度低的子块获得较低的采样率,并用SAMP(Sparsity Adaptive Matching Pursuit)算法实现重构。仿真结果显示,所提方法能够有效地解决块效应问题,尤其对于局部图像而言,重构图像的画质得到了明显改善。 The method of block compressed sensing really makes up for the defects of the consumed resource and time in reconstruction of large-size images.However,there is an obvious block effect in the reconstructed image.Aiming to solve the problem of inaccurate anlysis of texture complexity that hinders reduction of the block effect in adaptive sampling compressed sensing method,this paper proposed an adaptive block compressed sensing method based on co-occurrence matrices.The texture feature of image is analyzed by the co-occurrence matrix,and then the sampling rate is adaptively allocated according to the texture feature.Under the premise that the total sampling rate is not changed,the image with complex texture obtains higher sampling rate,and the image with simple texture obtains lower sampling rate.At last,SAMP(Sparsity Adaptive Matching Pursuit)is used to conduct reconstruction.The simulation results show that the proposed method can effectively eliminate the block effect,especially for the partial blocks,and the performance of the reconstructed block is obviously improved.
作者 杜秀丽 张薇 顾斌斌 陈波 邱少明 DU Xiu-li;ZHANG Wei;GU Bin-bin;CHEN Bo;QIU Shao-ming(Key Laboratory of Communications Network and Information Processing,Dalian University,Dalian 116622,China)
出处 《计算机科学》 CSCD 北大核心 2018年第8期277-282,共6页 Computer Science
基金 辽宁省教育厅高速眼图测试关键技术研究(L2014495) 辽宁"百千万人才工程"培养经费资助
关键词 分块压缩感知 灰度共生矩阵 采样率 Block compressed sensing Co-occurrence matrices Entropy Sampling rate
  • 相关文献

参考文献10

二级参考文献77

  • 1郭德军,宋蛰存.基于灰度共生矩阵的纹理图像分类研究[J].林业机械与木工设备,2005,33(7):21-23. 被引量:55
  • 2程勇,王勉华.选煤系统中的模糊模式识别方法[J].工矿自动化,2006,32(4):25-27. 被引量:1
  • 3陈玲,沈红标,李咸伟,刘其真.改进的图像纹理检索方法在矿石识别中的应用[J].中国图象图形学报,2006,11(11):1700-1703. 被引量:12
  • 4Haralick R M,Shanmugam K.Texture features for image classification.IEEE Tmns.on Sys,Man,and Cyb,1973,SMC-3(6):610-621.
  • 5Ulaby FT,Kouyate F,Brisco B,et al.Texturalinformation in SAR Images.IEEE Transactions on Geoscience and Remote Sensing,1986,24(2):235-245.
  • 6WANG Renbao, LIANG Zhe. Automatic Separation System of Coal Gangue Based on DSP and Digital Image Processing [ C ]//Photonies and Opto- electronics Symposium on Digital Object Identifier, 2011 ,Wuhan.
  • 7Bradley A,Jackway P,Lovell B. Classification in scale-space:applications to texture analysis. Proc. Of DICTA-95, Austral ia, 1995
  • 8Walker R F,Jackeay P T,Longstaff ID.Recent developments in the use of the co-occurrence matrix for texture recognition. Proc of 13 Internation Conference on Digital Image Processing.Greece, 1997.
  • 9Ohanian P P, Dubes R C. Performance Evaluation for Four Class of Texture Features.Pattern Recognition, 1992
  • 10贾永红,数字影像处理.武汉:武汉大学出版社,2003.9

共引文献405

同被引文献93

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部