期刊文献+

基于自发呈报系统恩格列净安全信号的挖掘与评价

Mining and evaluation of safe signals induced by empagliflozin based on spontaneous reporting system
在线阅读 下载PDF
导出
摘要 目的挖掘和评价恩格列净的安全信号,为临床用药提供参考。方法采用数据挖掘法对FDA的不良事件报告系统(AERS)进行恩格列净的安全信号挖掘,采用SPSS 22.0分析性别、年龄、剂量、用药时长对安全信号的影响。结果纳入AERS的2014年第一季度至2017年第三季度的不良反应报告12 468 235份,首要怀疑恩格列净的报告7552份,挖掘出163个恩格列净的安全信号,其中肾脏和泌尿系统安全信号37个。统计分析发现肾脏和泌尿系统不良反应相对其他不良反应在年龄(P=0.980)、用药时长(P=0.701)、剂量(P=0.494)中的分布差异均无统计学意义,在性别(P=0.038)差异有统计学意义。结论挖掘和评价恩格列净的安全信号可为进一步的研究奠定基础。 Objective To mine and evaluate the safe signals induced by empagliflozin and to provide references for clinical practice. Methods Data mining was used to find the safe signals of empagliflozin from the AERS submitted to the FDA. SPSS 22.0 was used to analyze the effect of sex, age, dosage, and medication duration on the signals. Results Totally 12 468 235 reports of AERS from January 2014 to September 2017 were mined, among which 7552 were mainly induced by empagliflozin. A total of 163 safe signals related to empagliflozin were mined, with 37 renal and urinary system signals. The adverse reactions in the renal and urinary system as compared with in other adverse drug reactions had no difference in age (P = 0.980), medication duration (P = 0.701), and dosage (P=0.494), but there was significant difference in gender (P = 0.038). Conclusion Mining and evaluation the safe signals induced by empagliflozin can lay a foundation for further research.
作者 彭媛 李胜前 刘福 PENG Yuan, LI Sheng-qian, LIU Fu(Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong Sichuan 63700)
出处 《中南药学》 CAS 2018年第7期1026-1029,共4页 Central South Pharmacy
关键词 恩格列净 不良反应 数据挖掘 安全信号 empagliflozin adverse drug reaction data mining safe signal
  • 相关文献

参考文献7

二级参考文献82

  • 1卜擎燕,熊宁宁,邹建东,蒋萌,刘芳,Anna Zhao-Wong.ICH国际医学用语词典(MedDRA):药事管理的标准医学术语集[J].中国临床药理学与治疗学,2007,12(5):586-590. 被引量:41
  • 2Rawlins, M D. Spontaneous reporting of adverse drug reactions. I: the data[J]. Br J Clin Pharmacol, 1988,26(1): 1-5.
  • 3Rawlins, M D. Spontaneous reporting of adverse drug reactions. II: Uses[J]. Br J Clin Pharmacol, 1988,26(1): 7-11.
  • 4Finney, D J. The design and logic of a monitor of drug use [J].J Chronic Dis, 1965,18: 77-98.
  • 5Napke, E. Drug adverse reaction alerting program[J].Canad Pharm J, 1968,20:251-254.
  • 6Finney, D J Systematic signalling of adverse reactions to drugs[J]. Meth Inf Med, 1974,13: 1-10.
  • 7Napke, E. The Canadian drug adverse reaction reporting program [J]. Drug Inf J, 1975,9(2-3): 224-232.
  • 8Moore,N F Thiessard,B Begaud. The history of disproportionality measures (reporting odds ratio, proportional reporting rates) in spontaneous reporting of adverse drug reactions[J].Pharmacoepidemiol Drug Saf 2005,14(4): 285-286.
  • 9Hochberg, A M M Hauben, R K Pearson, et al. An evaluation of three signal-detection algorithms using a highly inclusive reference event database[J].Drug Saf,, 2009,32(6):509-525.
  • 10van Puijenbroek,E P A Bate, H G Leufkens, et al. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions[J]. Pharmacoepidemiol Drag Saf, 2002,11(1): 3-10.

共引文献214

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部