期刊文献+

基于NSCT与引导滤波的多聚焦图像融合 被引量:11

Multi-Focus Image Fusion Based on NSCT and Guided Filtering
原文传递
导出
摘要 针对多聚焦图像融合中聚焦物体边缘衔接处产生伪影的问题,提出一种基于非下采样Contourlet变换(NSCT)与引导滤波的多聚焦图像融合算法。该算法对多聚焦图像进行NSCT分解后,利用基于边缘的加权融合方案处理低频子带系数,利用双向拉普拉斯滤波器提取带通方向子带系数的边缘和显著信息,通过引导滤波器对初始融合权重进行修正,最后利用NSCT重构获得融合后的多聚焦图像。实验结果表明,与其他融合算法相比,本文算法提高了融合图像的信息丰富度和清晰度,避免在聚焦物体边缘衔接处产生伪影,提高了融合图像的总体质量。 Aiming at the problem of artifacts in the convergence of object edges in multi-focus images fusion,a multi-focus images fusion algorithm is proposed based on non-subsampled Contourlet transform(NSCT)and guided filtering,by which the multi-focus images are decomposed.For the sub-band coefficients of low-frequency,an edgebased weighted fusion scheme is adopted,while,for sub-band coefficients of band-pass directional,bidirectional Laplacian filtering is utilized to extract edge and significant information.Meanwhile,the guided filter is used to correct initial fusion weigh,and NSCT reconstruction is performed to obtain fused multi-focus image.The experimental results show that,compared with seven other fusion algorithms,the proposed algorithm can improve richness and clarity of fusion image,avoid artifacts at objects edge,and improve the fused image′s general quality.
作者 李娇 杨艳春 党建武 王阳萍 Li Jiao;Yang Yanchun;Dang Jianwu;Wang Yangping(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou,Gansu 730070,Chin)
出处 《激光与光电子学进展》 CSCD 北大核心 2018年第7期183-190,共8页 Laser & Optoelectronics Progress
基金 长江学者和创新团队发展计划资助(IRT_16R36) 国家自然科学基金(61562057 61162016 61462059) 兰州交通大学青年科学基金(2014006)
关键词 图像处理 图像融合 非下采样CONTOURLET变换 引导滤波 空间一致性 image processing image fusion non-subsample Contourlet transform guided filter spatial consistency
  • 相关文献

参考文献8

二级参考文献76

  • 1张军英,梁军利.基于脉冲耦合神经网络的图像融合[J].计算机仿真,2004,21(4):102-104. 被引量:18
  • 2ZHENG Yong-An SONG Jian-She ZHOU Wen-Ming WANG Rui-Hua.False Color Fusion for Multi-band SAR Images Based on Contourlet Transform[J].自动化学报,2007,33(4):337-341. 被引量:2
  • 3Aggarwal J K. Multi-Sensor Fusion for Computer Vision[M]. Berlin.. Springer-Verlag, 1993, chapter 1.
  • 4Eckhorn R, Reiboeck H J, Arndt M, et al. A neural networks for feature linking via synchronous activity: results from eat visual cortex and from simulations. In: R. M. J. Cotterill, editor, Models of Brain Function,, Cambridge: Cambridge Univ. Press, 1989:255 - 272.
  • 5Eckhom R. Neural mechanisms of scene segmentation:recordings from the visual cortex suggest basic circuits or linking field models[J]. 1EEE Trans. on Neural Network, 1999, 10(3):464 - 479.
  • 6lzhikevich E M. Class 1 neural excitability, conventional synapses,weakly connected networks, and mathematical foundations of pulse coupled models[J]. IEEE Trans. on Neural Network, 1999,10(3): 499 - 507.
  • 7lzhikevich E M. Weakly pulse-coupled oscillators, FM interactions, synchronization, and oscillatory associative memory[J]. IEEE Trans. on Neural Networks, 1999, 10(3):508 - 526.
  • 8Johnson J L, Padgett M L. PCNN models and applications[J]. 1EEE Trans. on Neural Networks, 1999, 10(3):480 - 498.
  • 9Broussard R P, Rogers S K, Oxley M E, et al. Physiologically motivated image fusion for object detection using a pulse coupled neural network[J]. IEEE Trans. on Neural Networks, 1999, 10(3):554 - 563.
  • 10Blasch E P. Biological information fusion using a PCNN and belief filtering[C]. In: Proceedings of the International Joint Conference on Neural Networks, Washington, DC, 1999, vol.4:2792 - 2795.

共引文献263

同被引文献71

引证文献11

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部