期刊文献+

Bifunctional plasmonic colloidosome/graphene oxidebased floating membranes for recyclable high-efficiency solar-driven clean water generation 被引量:6

Bifunctional plasmonic colloidosome/graphene oxidebased floating membranes for recyclable high-efficiency solar-driven clean water generation
原文传递
导出
摘要 Utilizing plasmonic nano-particles/structures for solar water evaporation has aroused increasing interest; however, large-scale methods are desired to boost the efficiency and improve the practicality of solar steam generation. We developed a membrane-supported floating solar steam generation system based on graphene oxide and a multiscale plasmonic nanostructure; the latter is a micrometer-sized colloidosome that was assembled from hollow and porous Ag/Au nanocubes. By taking advantage of multiscale plasmonic coupling of the particles, an extremely high solar thermal conversion efficiency up to 92% at 10 kW·m^-2 (with a water evaporation rate reaching 12.96 kg·m^-2·h^-1) can be achieved. The TiO2 nanoparticle-modified floating system is also capable of high-efficiency dye degradation in organic-polluted water, rendering such a membrane system recyclable and scalable for practical and versatile solar-driven generation of clean water. Utilizing plasmonic nano-particles/structures for solar water evaporation has aroused increasing interest; however, large-scale methods are desired to boost the efficiency and improve the practicality of solar steam generation. We developed a membrane-supported floating solar steam generation system based on graphene oxide and a multiscale plasmonic nanostructure; the latter is a micrometer-sized colloidosome that was assembled from hollow and porous Ag/Au nanocubes. By taking advantage of multiscale plasmonic coupling of the particles, an extremely high solar thermal conversion efficiency up to 92% at 10 kW·m^-2 (with a water evaporation rate reaching 12.96 kg·m^-2·h^-1) can be achieved. The TiO2 nanoparticle-modified floating system is also capable of high-efficiency dye degradation in organic-polluted water, rendering such a membrane system recyclable and scalable for practical and versatile solar-driven generation of clean water.
出处 《Nano Research》 SCIE EI CAS CSCD 2018年第7期3854-3863,共10页 纳米研究(英文版)
基金 This work was financially supported by the National Natural Science Foundation of China (Nos. 21475125 and 21175125), the Hundred Talents Program of the Chinese Academy of Sciences, and the State Key Laboratory of Electroanalyfical Chemistry (No. 110000R387).
关键词 PLASMONIC PHOTOTHERMAL RECYCLABLE steam generation dye degradation plasmonic photothermal recyclable steam generation dye degradation
  • 相关文献

参考文献1

二级参考文献2

共引文献2

同被引文献26

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部