期刊文献+

A survey on online feature selection with streaming features 被引量:4

A survey on online feature selection with streaming features
原文传递
导出
摘要 In the era of big data, the dimensionality of data is increasing dramatically in many domains. To deal with high dimensionality, online feature selection becomes critical in big data mining. Recently, online selection of dynamic features has received much attention. In situations where features arrive sequentially over time, we need to perform online feature selection upon feature arrivals. Meanwhile, considering grouped features, it is necessary to deal with features arriving by groups. To handle these challenges, some state-of- the-art methods for online feature selection have been proposed. In this paper, we first give a brief review of traditional feature selection approaches. Then we discuss specific problems of online feature selection with feature streams in detail. A comprehensive review of existing online feature selection methods is presented by comparing with each other. Finally, we discuss several open issues in online feature selection. In the era of big data, the dimensionality of data is increasing dramatically in many domains. To deal with high dimensionality, online feature selection becomes critical in big data mining. Recently, online selection of dynamic features has received much attention. In situations where features arrive sequentially over time, we need to perform online feature selection upon feature arrivals. Meanwhile, considering grouped features, it is necessary to deal with features arriving by groups. To handle these challenges, some state-of- the-art methods for online feature selection have been proposed. In this paper, we first give a brief review of traditional feature selection approaches. Then we discuss specific problems of online feature selection with feature streams in detail. A comprehensive review of existing online feature selection methods is presented by comparing with each other. Finally, we discuss several open issues in online feature selection.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2018年第3期479-493,共15页 中国计算机科学前沿(英文版)
基金 This work was supported in part by the National Key Research and Development Program of China (2016YFB 1000901), the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) of the Ministry of Education, China (IRT13059), the National Basic Research Program (973 Program) of China (2013CB329604), the Specialized Research Fund for the Doctoral Program of Higher Education (20130111110011), and the National Natural Science Foundation of China (Grant Nos. 61273292, 61229301, 61503112, 61673152).
关键词 big data feature selection online feature selection feature stream big data feature selection online feature selection feature stream
  • 相关文献

同被引文献24

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部