期刊文献+

基于关联规则的客户行为建模与商品推荐研究 被引量:5

A Research of a Recommender System Based on Customer Behavior Modeling by Mining Association Rules
在线阅读 下载PDF
导出
摘要 随着我国电子商务事业的发展,传统的电子商务服务模式已经不能满足人们的购物需求,针对客户个性化推荐的研究具有一定的意义.本文将Apriori算法进行改进,利用改进的Apriori算法对用户兴趣信息进行挖掘,挖掘用户之间的关联性,建立用户行为模型,为用户推荐其感兴趣的商品,提升用户的购买体验.实验表明,改进的算法提高了推荐的精度和速度. With the development of e-commerce in China, the traditional e-business service mode can no longer meet people's shopping needs. Personalized recommendation for customers is a problem worthy of study. In this research, the improvement of Apriori algorithm is used to mine user interest information and the user correlation.Then, a user behavior model is set up, and can recommend the goods of interest, and improve the user's purchase experience. Experiments show that the improved Apriori algorithm improves the accuracy and speed of the recommendation system.
作者 林穗 郑志豪 Lin Sui;Zheng Zhi-hao(School of Computers, Guangdong University of Technology, Guangzhou 510006, China)
出处 《广东工业大学学报》 CAS 2018年第3期90-94,共5页 Journal of Guangdong University of Technology
基金 广州市科技计划项目(2017010160012)
关键词 电子商务 个性化推荐 APRIORI算法改进 用户行为建模 E-commerce personalized recommendation the improvement of Apriori algorithm user behavior modeling
  • 相关文献

参考文献10

二级参考文献170

  • 1刘志勇,刘磊,刘萍萍,杨帆,贾冰.一种基于语义网的个性化学习资源推荐算法[J].吉林大学学报(工学版),2009,39(S2):391-395. 被引量:14
  • 2周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 3秦国,杜小勇.基于用户层次信息的协同推荐算法[J].计算机科学,2004,31(10):138-140. 被引量:15
  • 4Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 5Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 6梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 7Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 9Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 10Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70

共引文献675

同被引文献31

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部