摘要
基于AZ63镁合金累积叠轧试验,比较了不同道次叠轧后的界面组织特征,利用扫描电镜观察断口形貌,分析了界面断裂特性,研究了界面结合机制。结果表明:AZ63镁合金经过350℃、5道次累积叠轧后,显微组织由细小等轴晶构成,先前结合面的质量在后续叠轧中逐渐得到改善;坯料与轧辊接触面因剪切作用聚集了大量孪晶组织,并在厚度方向上由表面到中心逐渐减少。拉伸断层主要发生在最后一道次叠轧变形的界面处,已形成良好结合的界面拉伸断口表现出与基体相同的韧窝形貌特征。界面结合机制为再结晶结合机制,通过界面处形核、再结晶、晶界连接实现界面结合。
The characteristics of the interface microstructure after different rolling processes were compared based on the AZ63 magnesium alloy accumulative rolling test,the interfacial fracture characteristics and the interfacial bonding mechanism were analyzed with the fracture morphology which observed by the scanning electron microscope. The results show that the microstructure of AZ63 magnesium alloy is composed of fine equiaxed grains after five accumulative rolling deformations at 350 ℃, and the quality of the previous bonding surface is gradually improved in the subsequent roll bonding processes. There are a large number of twins assembled on the interface of the sheet and the roller due to the shearing action,and the number of twins is gradually reduced from surface to center of the sheet in the thickness direction. The tensile fault mainly occurs at the interface of the last accumulative rolling deformation,the tensile fracture characteristics of interface with a good combination shows the seam dimple morphology as the matrix.The interfacial bonding mechanism is the recrystallization mechanism,which is realized by the interface nucleation,recrystallization and grain boundary connection.
作者
郭俊卿
丁祎
陈拂晓
皇涛
张信民
GUO Jun-qing;DING;CHEN Fu-xiao;HUANG Tao;ZHANG Xin-min(School of Materials Science & Engineering, Henan University of Science and Technology, Luoyang 471023, China;Collaborative Innovation Center of Nonferrous Metals of Henan Province, Luoyang 471023, China;Luoyang Tianjiu Kitchen Utensil Co. , Ltd. , Luoyang 471000, China)
出处
《塑性工程学报》
CAS
CSCD
北大核心
2018年第1期60-65,共6页
Journal of Plasticity Engineering
基金
中国博士后科学基金面上基金资助项目(2016M590677)
凝固技术国家重点实验室开放课题资助项目(SKLSP201631)
河南省基础与前沿技术研究基金资助项目(162300410211、112300413227)
关键词
AZ63镁合金
累积叠轧
组织演变
界面结合机制
AZ63 magnesium alloy
accumulative roll-bonding
microstructure evolution
interiacial bonding mechanism